Paradigm Shift in NLP

Tianxiang Sun, Xiangyang Liu, Xipeng Qiu, Xuanjing Huang
Fudan University

txsun19@fudan.edu.cn
11 Oct 2021

https://arxiv.org/abs/2109.12575

Outline

• Introduction
• The Seven Paradigms in NLP
• Paradigm Shift in NLP Tasks
• Potential Unified Paradigms
• Conclusion
Outline

• Introduction

• The Seven Paradigms in NLP

• Paradigm Shift in NLP Tasks

• Potential Unified Paradigms

• Conclusion
What is Paradigm?

• Definition from Wikipedia
 • In science and philosophy, a **paradigm** is a distinct set of **concepts** or **thought patterns**, including theories, research methods, postulates, and standards for what constitutes legitimate contributions to a field.

• Definition in the context of NLP
 • *Paradigm is the general framework to model a class of tasks*
What is Paradigm?

• **Definition from Wikipedia**
 • In science and philosophy, a *paradigm* is a distinct set of *concepts* or *thought patterns*, including theories, research methods, postulates, and standards for what constitutes legitimate contributions to a field.

• **Definition in the context of NLP**
 • *Paradigm is the general framework to model a class of tasks*
What is Paradigm?

• Definition from Wikipedia
 • In science and philosophy, a **paradigm** is a distinct set of **concepts** or **thought patterns**, including theories, research methods, postulates, and standards for what constitutes legitimate contributions to a field.

• Definition in the context of NLP
 • *Paradigm is the general framework to model a class of tasks*

![Diagram of Paradigm and Sequence Labeling Architecture]
Paradigms, Tasks, and Models

• A Rough Illustration
Paradigms, Tasks, and Models

• A Rough Illustration
Outline

• Introduction

• The Seven Paradigms in NLP

• Paradigm Shift in NLP Tasks

• Potential Unified Paradigms

• Conclusion
The Seven Paradigms in NLP

- Seven Paradigms
 - Class
 - Matching
 - SeqLab
 - MRC
 - Seq2Seq
 - Seq2ASeq
 - (M)LM
Classification (Class)

• Paradigm

\[y = \text{CLS}(\text{ENC}(x)). \]

• Model
 • \(\text{ENC}(\cdot) \): CNN, RNN, Transformers...
 • \(\text{CLS}(\cdot) \): (max/average/attention) pooling + MLP

• Tasks
 • Sentiment Analysis
 • Spam Detection
 • ...

![Diagram of model components with labels: Encoder, Classifier, Text, Label]
Matching

• Paradigm

\[Y = \text{CLS}(\text{ENC}(X_a, X_b)) \]

• Model
 - \text{ENC}(\cdot) : encode the two texts separately or jointly
 - \text{CLS}(\cdot) : capture the interaction, and then prediction

• Tasks
 - Natural Language Inference
 - Similarity Regression
 - ...
Sequence Labeling (SeqLab)

- **Paradigm**
 \[y_1, \cdots, y_n = \text{DEC}(\text{ENC}(x_1, \cdots, x_n)) \]

- **Model**
 - \text{ENC}(\cdot) : sequence model (RNN, Transformers…)
 - \text{DEC}(\cdot) : conditional random fields (CRF)

- **Tasks**
 - Named Entity Recognition (NER)
 - Part-Of-Speech Tagging
 - …
Machine Reading Comprehension (MRC)

Paradigm

\[y_k \cdots y_{k+l} = \text{DEC} (\text{ENC}(x_p, x_q)) \]

Model

- **ENC(·)** : CNN, RNN, Transformers...
- **DEC(·)** : start/end position prediction

Tasks

- Machine Reading Comprehension
Sequence-to-Sequence (Seq2Seq)

- **Paradigm**

\[y_1, \cdots, y_m = \text{DEC}(\text{ENC}(x_1, \cdots, x_n)) \]

- **Model**

 - \(\text{ENC}(\cdot) \) : CNN, RNN, Transformers...
 - \(\text{DEC}(\cdot) \) : CNN, RNN, Transformers...

- **Tasks**

 - Machine Translation
 - End-to-end dialogue system
 - ...
Sequence-to-Action-Sequence (Seq2ASeq)

• Paradigm

\[A = \text{CLS}(\text{Enc}(\mathcal{X}), \mathcal{C}) \]

• Model

 • \(\text{Enc}(\cdot) \) : CNN, RNN, Transformers...

 • \(\text{CLS}(\cdot) \) : predict an action conditioned on a configuration and the input text

• Tasks

 • Dependency Parsing

 • Constituency Parsing

 • …
(Masked) Language Model (\textbf{(M)LM})

- **Paradigm**
 - LM: \(x_k = \text{DEC}(x_1, \ldots, x_{k-1}) \)
 - MLM: \(\bar{x} = \text{DEC}(\text{ENC}(\bar{x})) \)

- **Model**
 - \(\text{ENC}(\cdot) \) : CNN, RNN, Transformers...
 - \(\text{DEC}(\cdot) \) : simple classifier, or a auto-regressive decoder

- **Tasks**
 - Language Modeling
 - Masked Language Modeling
 - ...
Compound Paradigm

• Complicated NLP tasks can be solved by combining multiple fundamental paradigms

• An Example
 • HotpotQA

Paragraph A, Return to Olympus:
[1] Return to Olympus is the only album by the alternative rock band Malfunkshun. [2] It was released after the band had broken up and after lead singer Andrew Wood (later of Mother Love Bone) had died of a drug overdose in 1990. [3] Stone Gossard, of Pearl Jam, had compiled the songs and released the album on his label, Loosegroove Records.

Paragraph B, Mother Love Bone:

Q: What was the former band of the member of Mother Love Bone who died just before the release of “Apple”?

A: Malfunkshun

Supporting facts: 1, 2, 4, 6, 7

HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering, EMNLP 2018
Compound Paradigm

- Complicated NLP tasks can be solved by combining multiple fundamental paradigms

- An Example
 - HotpotQA = Matching + MRC

Paragraph A, Return to Olympus:
[1] Return to Olympus is the only album by the alternative rock band Malfunkshun. [2] It was released after the band had broken up and after lead singer Andrew Wood (later of Mother Love Bone) had died of a drug overdose in 1990. [3] Stone Gossard, of Pearl Jam, had compiled the songs and released the album on his label, Loosegroove Records.

Paragraph B, Mother Love Bone:

Q: What was the former band of the member of Mother Love Bone who died just before the release of “Apple”? A: Malfunkshun

Supporting facts: 1, 2, 4, 6, 7

Outline

• Introduction

• The Seven Paradigms in NLP

• Paradigm Shift in NLP Tasks

• Potential Unified Paradigms

• Conclusion
Paradigm Shift in NLP
Paradigm Shift in NLP

<table>
<thead>
<tr>
<th>Task</th>
<th>Input Output Example</th>
<th>Class</th>
<th>Matching</th>
<th>SeqLab</th>
<th>MRC</th>
<th>Seq2Seq</th>
<th>Seq2ASeq</th>
<th>(M) LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>X, Y</td>
<td>Devlin et al. (2019)</td>
<td>X,\mathcal{L}</td>
<td>$Y \in {0, 1}$</td>
<td>Chai et al. (2020)</td>
<td>X</td>
<td>y_1, \ldots, y_m</td>
<td>Yang et al. (2018a)</td>
</tr>
<tr>
<td>NLI</td>
<td>$\mathcal{X}_a \oplus \mathcal{X}_b$, \mathcal{Y}</td>
<td>Devlin et al. (2019)</td>
<td>$\mathcal{X}_a, \mathcal{X}_b$, \mathcal{Y}</td>
<td>Chen et al. (2017b)</td>
<td>$f_{prompt}(\mathcal{X}_a, \mathcal{X}_b)$</td>
<td>\mathcal{Y}</td>
<td>\mathcal{L}</td>
<td>McCann et al. (2018)</td>
</tr>
<tr>
<td>NER</td>
<td>X_{span}, \mathcal{Y}</td>
<td>Fu et al. (2021)</td>
<td>x_1, \ldots, x_n, y_1, \ldots, y_m</td>
<td>Ma and Hovy (2016)</td>
<td>X, Q_y</td>
<td>$\mathcal{X}{span}$, $\mathcal{Y}{sent}$</td>
<td>Li et al. (2020)</td>
<td>X, $\mathcal{X}{sent}$, $\mathcal{Y}{sent}$</td>
</tr>
<tr>
<td>ABSA</td>
<td>\mathcal{X}_{as}, \mathcal{Y}</td>
<td>Wang et al. (2016)</td>
<td>X, \mathcal{S}_{aux}</td>
<td>Sun et al. (2019)</td>
<td>X, $\mathcal{Q}{as}$, $Q{opinion}$, Q_{sent}</td>
<td>$\mathcal{X}{as}$, $\mathcal{X}{opin}$, \mathcal{Y}_{sent}</td>
<td>Mao et al. (2021)</td>
<td>X, $\mathcal{X}{as}$, $\mathcal{Y}{sent}$</td>
</tr>
<tr>
<td>RE</td>
<td>X, \mathcal{Y}</td>
<td>Zeng et al. (2014)</td>
<td>X, \mathcal{Q}_y</td>
<td>Levy et al. (2017)</td>
<td>X, \mathcal{Q}_{sent}</td>
<td>\mathcal{X}_{sent}</td>
<td>Levy et al. (2017)</td>
<td>X, \mathcal{Q}_{sent}</td>
</tr>
<tr>
<td>Summ</td>
<td>Input Output Example</td>
<td>$(\mathcal{X}, \mathcal{S}{summ}, \mathcal{Y}{sent})^{m-1}_{i=0}$</td>
<td>\mathcal{S}_{summ}</td>
<td>Zhong et al. (2020)</td>
<td>X_1, \ldots, X_n</td>
<td>$y_1, \ldots, y_n \in {0, 1}$</td>
<td>Cheng and Lapata (2016)</td>
<td>X, \mathcal{Q}_{summ}</td>
</tr>
<tr>
<td>Parsing</td>
<td>Input Output Example</td>
<td>(x_1, \ldots, x_n), \mathcal{Y}</td>
<td>Strzysz et al. (2019)</td>
<td>X, \mathcal{Q}_{child}</td>
<td>Gan et al. (2021)</td>
<td>X, \mathcal{Q}_{parent}</td>
<td>Vinyls et al. (2015)</td>
<td>X, \mathcal{Q}_{child}</td>
</tr>
</tbody>
</table>

Table 1: Paradigms shift in natural language processing tasks. TC: text classification. NLI: natural language inference. NER: named entity recognition. ABSA: aspect-based sentiment analysis. RE: relation extraction. Summ: text summarization. Parsing: syntactic/semantic parsing. f and g indicate pre-processing and post-processing, respectively. In (M) LM, $f(\cdot)$ is usually implemented as a template and $g(\cdot)$ is a verbalizer. In parsing tasks, $g(\cdot)$ is a function that reconstructs the structured representation (e.g., dependency tree) from the output sequence. \mathcal{L} means label description. \oplus means concatenation. \mathcal{X}_{as}, \mathcal{X}_{opin}, \mathcal{Y}_{sent} mean aspect, opinion, and sentiment, respectively. \mathcal{S}_{aux} means auxiliary sentence. \mathcal{X}_{sub}, \mathcal{X}_{obj} stand for subject entity and object entity, respectively. \mathcal{S}_{sum} means candidate summary. \mathcal{C}_t is configuration t and A is a sequence of actions. More details can be found in Section 3.
Paradigm Shift in Text Classification

• Traditional Paradigm: *Class*
• Shifted to...
 • Seq2Seq
 • Matching
 • (M)LM
Paradigm Shift in Text Classification

• Traditional Paradigm: **Class**
• Shifted to...
 • Seq2Seq
 • Matching
 • (M)LM

Convolutional Neural Networks for Sentence Classification. EMNLP 2014
Paradigm Shift in Text Classification

• Traditional Paradigm: Class
• Shifted to...
 • Seq2Seq
 • Matching
 • (M)LM

SGM: Sequence Generation Model for Multi-label Classification. COLING 2018
Paradigm Shift in Text Classification

- **Traditional Paradigm:** Class
- **Shifted to...**
 - Seq2Seq
 - Matching
 - (M)LM

Paradigm Shift in Text Classification

- **Traditional Paradigm:** Class
- **Shifted to...**
 - Seq2Seq
 - Matching
 - (M)LM

Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. EACL 2021
Paradigm Shift in Text Classification
Paradigm Shift in NLI

• Traditional Paradigm: **Matching**
• Shifted to...
 • Class
 • Seq2Seq
 • (M)LM
Paradigm Shift in NLI

• **Traditional Paradigm:** Matching
• **Shifted to...**
 - Class
 - Seq2Seq
 - (M)LM

Enhanced LSTM for Natural Language Inference. ACL 2017
Paradigm Shift in NLI

- **Traditional Paradigm:** Matching
- **Shifted to...**
 - Class
 - Seq2Seq
 - (M)LM

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019
Paradigm Shift in NLI

- **Traditional Paradigm:** Matching
- **Shifted to...**
 - Class
 - Seq2Seq
 - (M)LM

Paradigm Shift in NLI

- **Traditional Paradigm:** Matching
- **Shifted to...**
 - Class
 - Seq2Seq
 - (M)LM

Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. EACL 2021
Paradigm Shift in NLI

Diagram:
- SeqLab
- Class
- Matching
- MRC
- (M)LM
- Seq2Seq
- Seq2ASeq

Arrows indicate relationships and dependencies between the concepts.
Paradigm Shift in NER

Flat NER
Barack Obama was born in the US

Nested NER
The Lincoln Memorial

Discontinuous NER
have much muscle pain and fatigue
Paradigm Shift in NER

• **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - Seq2ASeq (Discontinuous NER)

• **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - Seq2Seq (All)
Paradigm Shift in NER

Traditional Paradigm:
- SeqLab (Flat NER)
- Class (Nested NER)
- Seq2ASeq (Discontinuous NER)

Shifted to / Unified in...
- Class (Flat&Nested NER)
- MRC (Flat&Nested NER)
- Seq2Seq (All)

End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF. ACL 2016
Paradigm Shift in NER

- **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - **Class** (Nested NER)
 - Seq2ASeq (Discontinuous NER)

- **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - Seq2Seq (All)

Multi-Grained Named Entity Recognition. ACL 2019
Paradigm Shift in NER

• **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - **Seq2ASeq** (Discontinuous NER)

• **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - **Seq2Seq** (All)

An Effective Transition-based Model for Discontinuous NER. ACL 2020
Paradigm Shift in NER

- **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - Seq2ASeq (Discontinuous NER)

- **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - Seq2Seq (All)
Paradigm Shift in NER

- **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - Seq2ASeq (Discontinuous NER)

- **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - Seq2Seq (All)

Matrix $(l \times l \times c)$ Labeling:

\[
\begin{array}{ccc}
\text{The} & 0 & 0 \\
\text{Lincoln} & -1 & 1 \\
\text{Memorial} & -1 & -1 \\
\end{array}
\]

\[
h_s(i) = \text{FFNN}_s(x_{si})
\]

\[
h_e(i) = \text{FFNN}_e(x_{ei})
\]

\[
r_m(i) = h_s(i)^T U_m h_e(i) + W_m(h_s(i) \oplus h_e(i)) + b_m
\]

Named Entity Recognition as Dependency Parsing. ACL 2020
Paradigm Shift in NER

• Traditional Paradigm:
 • SeqLab (Flat NER)
 • Class (Nested NER)
 • Seq2ASeq (Discontinuous NER)

• Shifted to / Unified in...
 • Class (Flat&Nested NER)
 • MRC (Flat&Nested NER)
 • Seq2Seq (All)

Barack Obama was born in the US.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Natural Language Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Find locations in the text, including non-geographical locations, mountain ranges and bodies of water.</td>
</tr>
<tr>
<td>Facility</td>
<td>Find facilities in the text, including buildings, airports, highways and bridges.</td>
</tr>
<tr>
<td>Organization</td>
<td>Find organizations in the text, including companies, agencies and institutions.</td>
</tr>
</tbody>
</table>
Paradigm Shift in NER

- **Traditional Paradigm:**
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - Seq2ASeq (Discontinuous NER)

- **Shifted to / Unified in...**
 - Class (Flat&Nested NER)
 - MRC (Flat&Nested NER)
 - Seq2Seq (All)

A Unified Generative Framework for Various NER Subtasks. ACL 2021
Paradigm Shift in NER

- Traditional Paradigm:
 - SeqLab (Flat NER)
 - Class (Nested NER)
 - Seq2ASeq (Discontinuous NER)

- Shifted to / Unified in:
 - Class (Flat & Nested NER)
 - MRC (Flat & Nested NER)
 - Seq2Seq (All)

A Unified Generative Framework for Various NER Subtasks. ACL 2021
Paradigm Shift in NER
Paradigm Shift in ABSA

A Unified Generative Framework for Aspect-Based Sentiment Analysis. ACL 2021
Paradigm Shift in ABSA

- **Traditional Paradigm:**
 - SeqLab (AE, OE, AOE, ...)
 - Class (ALSC...)

- **Shifted to / Unified in...**
 - Matching (ALSC)
 - MRC (All)
 - Seq2Seq (All)
 - (M)LM (All)
Paradigm Shift in ABSA

• Traditional Paradigm:
 • SeqLab (AE, OE, AOE, ...)
 • Class (ALSC...)

• Shifted to / Unified in...
 • Matching (ALSC)
 • MRC (All)
 • Seq2Seq (All)
 • (M)LM (All)

Attention-based LSTM for Aspect-level Sentiment Classification. EMNLP 2016
Paradigm Shift in ABSA

- **Traditional Paradigm:**
 - SeqLab (AE, OE, AOE, ...)
 - Class (ALSC...)

- **Shifted to / Unified in...**
 - Matching (ALSC)
 - MRC (All)
 - Seq2Seq (All)
 - (M)LM (All)

X: LOC1 is often considered the coolest area of London.
Aspect: Safety

- QA-M What do you think of the safety of LOC1? [X]
- NLI-M LOC1 - safety. [X]
- QA-B The polarity of the aspect safety of LOC1 is positive. [X]
- NLI-B LOC1 - safety - positive. [X]
Paradigm Shift in ABSA

• Traditional Paradigm:
 • SeqLab (AE, OE, AOE, ...)
 • Class (ALSC...)

• Shifted to / Unified in...
 • Matching (ALSC)
 • MRC (All)
 • Seq2Seq (All)
 • (M)LM (All)

Original training example:
 • input text: The ambience was nice, but service was not so great.
 • annotations: (ambience, nice, positive), (service, no so great, negative)

Converted training example 1:
 • query-1: Find the aspect terms in the text.
 • answer-1: ambience, service
 • query-2: Find the sentiment polarity and opinion terms for ambience in the text.
 • answer-2: (nice, positive)

Converted training example 2:
 • query-1: Find the aspect terms in the text.
 • answer-1: ambience, service
 • query-2: Find the sentiment polarity and opinion terms for service in the text.
 • answer-2: (not so great, negative)
Paradigm Shift in ABSA

- **Traditional Paradigm:**

A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis. AAAI 2021
Paradigm Shift in ABSA

- **Traditional Paradigm:**
 - SeqLab (AE, OE, AOE, ...)
 - Class (ALSC...)
- **Shifted to / Unified in...**
 - Matching (ALSC)
 - MRC (All)
 - Seq2Seq (All)
 - (M)LM (All)

A Unified Generative Framework for Aspect-Based Sentiment Analysis. ACL 2021
Paradigm Shift in ABSA

Traditional Paradigm:
- SeqLab (AE, OE, AOE, …)
- Class (ALSC…)

Shifted to / Unified in:
- Matching (ALSC)
- MRC (All)
- Seq2Seq (All)
- (M)LM (All)

A Unified Generative Framework for Aspect-Based Sentiment Analysis. ACL 2021
Paradigm Shift in ABSA

• Traditional Paradigm:
 • SeqLab (AE, OE, AOE, ...)
 • Class (ALSC...)

• Shifted to / Unified in...
 • Matching (ALSC)
 • MRC (All)
 • Seq2Seq (All)
 • (M)LM (All)

Consistency prompt
Polarity prompt

The owners are great fun and the beer selection is worth staying for.

The owners are great fun? [MASK].

This is [MASK].
Paradigm Shift in ABSA

- Traditional Paradigm:
 - SeqLab (AE, OE, AOE, …)
 - Class (ALSC…)
 - Shifted to / Unified in…
 - Matching (ALSC)
 - MRC (All)
 - Seq2Seq (All)
 - (M)LM (All)

Paradigm Shift in ABSA
Paradigm Shift in Relation Extraction

- **Traditional Paradigm:**
 - SeqLab (entity extraction)
 - Class (relation classification)

- **Shifted to / Unified in...**
 - Seq2Seq
 - MRC
 - (M)LM
Paradigm Shift in Relation Extraction

• **Traditional Paradigm:**
 • SeqLab (entity extraction)
 • Class (relation classification)

• **Shifted to / Unified in...**
 • Seq2Seq
 • MRC
 • (M)LM

Relation Classification via Convolutional Deep Neural Network. COLING 2014
Paradigm Shift in Relation Extraction

- **Traditional Paradigm:**
 - SeqLab (entity extraction)
 - Class (relation classification)

- **Shifted to / Unified in...**
 - Seq2Seq
 - MRC
 - (M)LM

Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism. ACL 2018
Paradigm Shift in Relation Extraction

- **Traditional Paradigm:**
 - SeqLab (entity extraction)
 - Class (relation classification)

- **Shifted to / Unified in:**
 - Seq2Seq
 - MRC
 - (M)LM

Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism. ACL 2018
Paradigm Shift in Relation Extraction

• Traditional Paradigm:
 • SeqLab (entity extraction)
 • Class (relation classification)

• Shifted to / Unified in...
 • Seq2Seq
 • MRC (entity prediction)
 • (M)LM

<table>
<thead>
<tr>
<th>Relation</th>
<th>Question Template</th>
<th>Sentence & Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>educated_at(x,y)</td>
<td>Where did x graduate from? In which university did x study? What is x’s alma mater?</td>
<td>Albert Einstein was awarded a PhD by the University of Zürich, with his dissertation titled...</td>
</tr>
<tr>
<td>occupation(x,y)</td>
<td>What did x do for a living? What is x’s job? What is the profession of x?</td>
<td>Steve Jobs was an American businessman, inventor, and industrial designer.</td>
</tr>
<tr>
<td>spouse(x,y)</td>
<td>Who is x’s spouse? Who did x marry? Who is x married to?</td>
<td>Angela Merkel’s second and current husband is quantum chemist and professor Joachim Sauer, who has largely...</td>
</tr>
</tbody>
</table>
Paradigm Shift in Relation Extraction

- **Traditional Paradigm:**
 - SeqLab (entity extraction)
 - Class (relation classification)

- **Shifted to / Unified in...**
 - Seq2Seq
 - MRC (triplet extraction)
 - (M)LM

Formulate RESUME dataset as Multi-turn QA:

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 Person: who is mentioned in the text?</td>
<td>A: e_1</td>
</tr>
<tr>
<td>Q2 Company: which companies did e_1 work for?</td>
<td>A: e_2</td>
</tr>
<tr>
<td>Q3 Position: what was e_1’s position in e_2?</td>
<td>A: e_3</td>
</tr>
<tr>
<td>Q4 Time: During which period did e_1 work for e_2 as e_3</td>
<td>A: e_4</td>
</tr>
</tbody>
</table>
Mark Twain was the father of Langdon.

[p] the **person** Langdon [p] ‘s parent was
[p] the **person** Mark Twain [p].

Paradigm Shift in Relation Extraction

- **Traditional Paradigm:**
 - SeqLab (entity extraction)
 - Class (relation classification)

- **Shifted to / Unified in...**
 - Seq2Seq
 - MRC (triplet extraction)
 - (M)LM

Paradigm Shift in Relation Extraction

Traditional Paradigm:
- SeqLab (entity extraction)
- Class (relation classification)

Shifted to Unified in...
- Seq2Seq
- MRC (triplet extraction)

Paradigm Shift in Relation Extraction
Paradigm Shift in Text Summarization

- **Traditional Paradigm:**
 - SeqLab (extractive)
 - Seq2Seq (abstractive)

- **Shifted to / Unified in...**
 - Matching (extractive)
 - (M)LM (abstractive)
Paradigm Shift in Text Summarization

- **Traditional Paradigm:**
 - SeqLab (extractive)
 - Seq2Seq (abstractive)

- **Shifted to / Unified in...**
 - Matching (extractive)
 - (M)LM (abstractive)

SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents. AAAI 2017
Paradigm Shift in Text Summarization

- **Traditional Paradigm:**
 - SeqLab (extractive)
 - Seq2Seq (abstractive)

- **Shifted to / Unified in...**
 - Matching (extractive)
 - (M)LM (abstractive)

Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond. CoNLL 2016
Paradigm Shift in Text Summarization

- **Traditional Paradigm:**
 - SeqLab (extractive)
 - Seq2Seq (abstractive)

- **Shifted to / Unified in...**
 - Matching (extractive)
 - (M)LM (abstractive)

Extractive Summarization as Text Matching. ACL 2020
Paradigm Shift in Text Summarization

- **Traditional Paradigm:**
 - SeqLab (extractive)
 - Seq2Seq (abstractive)

- **Shifted to / Unified in...**
 - Matching (extractive)
 - (M)LM (abstractive)

Paradigm Shift in Parsing

Dependency Parsing

I prefer the morning flight through Denver

Semantic Parsing

which country had the highest carbon emissions last year

SELECT country.name
FROM country, co2_emissions
WHERE country.id = co2_emissions.country_id
AND co2_emissions.year = 2014
ORDER BY co2_emissions.volume DESC
LIMIT 1;

Constituency Parsing

S
 NP
 Pronoun
 l
 Det
 shot
 Nominal
 Noun
 in my pajamas
 VP
 Pronoun
 l
 Verb
 shot
 Det
 Nominal
 Noun
 elephant
 PP
 an
 Nominal
 in my pajamas
 PP
 Noun
 elephant
Paradigm Shift in Parsing

• Traditional Paradigm:
 • Class (graph-based)
 • Seq2ASeq (transition-based)

• Shifted to / Unified in...
 • SeqLab
 • Seq2Seq
 • (M)LM
 • MRC
Paradigm Shift in Parsing

• Traditional Paradigm:
 • Class (graph-based)
 • Seq2ASeq (transition-based)

• Shifted to / Unified in…
 • SeqLab
 • Seq2Seq
 • (M)LM
 • MRC

Paradigm Shift in Parsing

- **Traditional Paradigm:**
 - Class (graph-based)
 - Seq2ASeq (transition-based)
- **Shifted to / Unified in...**
 - SeqLab
 - Seq2Seq
 - (M)LM
 - MRC

Paradigm Shift in Parsing

• Traditional Paradigm:
 • Class (graph-based)
 • Seq2ASeq (transition-based)

• Shifted to / Unified in…
 • SeqLab
 • Seq2Seq
 • (M)LM
 • MRC

Linearize a parsing tree:

```
John has a dog.  \rightarrow  NP  
                  |   VP
                  NNP  VBZ

John has a dog.  \rightarrow  (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP} )_{VP} . )_{S}
```
Paradigm Shift in Parsing
Trends of Paradigm Shift

Trends of Paradigm Shift

• More General and Flexible Paradigms are Dominating
 • Traditional: Class, SeqLab, Seq2ASeq
 • General: Matching, MRC, Seq2Seq, (M)LM

• The Impact of Pre-trained LMs
 • Formulate a NLP task as one that PLMs are good at!
Outline

• Introduction

• The Seven Paradigms in NLP

• Paradigm Shift in NLP Tasks

• Potential Unified Paradigms

• Conclusion
Why Unified Paradigm?

- **Data Efficiency**
 - Task-specific models usually required large-scale annotated data, while unified models can achieve considerable performance with much less data.

- **Generalization**
 - Unified models can easily generalize to unseen tasks.

- **Convenience**
 - Unified models are easier and cheaper to deploy and serve. They are born to be commercial black-box APIs.
Potential Unified Paradigms

- (M)LM
- Matching
- MRC
- Seq2Seq
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. EACL 2021
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference. EACL 2021
• **Prompt**
 - Manually designed
 - Mined from corpora
 - Generated by paraphrasing
 - Generated by another PLM
 - Learned by gradient search/descent

• **Verbalizer**
 - Manually designed
 - Automatically searched
 - Constructed and refined with KB
• **Parameter-Efficient Tuning**
 - Only tuning prompts can match the performance of fine-tuning
 - Mixed-task inference

Matching

Matching

Entailment head
(Feed Forward Layer)

Predict

Entail
- Not entail

Science:

- Entail
- Not entail

Business:

- Entail
- Not entail

Sports:

- Entail
- Not entail

[CLS] The IAU downgrade Pluto as a dwarf planet

Textual Entailment

This is science news [EOS]

This is business news [EOS]

This is sports news [EOS]

Label descriptions

Label Description

Matching

- **Label Description**
 - Manually designed (can be the same as prompt)
 - Generated by reinforcement learning ([Chai et al.](https://arxiv.org/abs/2104.14690))

Matching

- **Label Description**
 - Manually designed (can be the same as prompt)
 - Generated by reinforcement learning ([Chai et al.](https://arxiv.org/abs/2104.14690))

- **The Entailment Model**
 - Fine-tuning a PLM on MNLI
(M)LM or Matching?

- **(M)LM**
 - [MASK] -> MLM head, instead of randomly initialized classifier
 - Require modifications of input (prompt) and output (verbalizer)
 - Pre-trained LMs can be directly used (even zero-shot)
 - Compatible with generation tasks

- **Matching**
 - [CLS] -> MNLI/NSP head, instead of randomly initialized classifier
 - Only label descriptions are required (less engineering!)
 - Contrastive learning can be applied
 - Suffer from domain adaption (due to the requirement of supervised data)
 - Only support NLU tasks
• **A Highly General Paradigm**

 A task can be solved as a MRC one as long as its input can be formulated as `[context, question, answer]`.

Examples

<table>
<thead>
<tr>
<th>Question</th>
<th>Context</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a major importance of Southern California in relation to California and the US?</td>
<td>...Southern California is a major economic center for the state of California and the US...</td>
<td>major economic center</td>
</tr>
<tr>
<td>What is the translation from English to German?</td>
<td>Most of the planet is ocean water.</td>
<td>Der Großteil der Erde ist Meerwasser</td>
</tr>
<tr>
<td>What is the summary?</td>
<td>Harry Potter star Daniel Radcliffe gains access to a reported £320 million fortune...</td>
<td>Harry Potter star Daniel Radcliffe gets £320M fortune...</td>
</tr>
<tr>
<td>Hypothesis: Product and geography are what make cream skim milk work. Entailment, neutral, or contradiction?</td>
<td>Conceptually cream skimming has two basic dimensions – product and geography.</td>
<td>Entailment</td>
</tr>
<tr>
<td>Is this sentence positive or negative?</td>
<td>A stirring, funny and finally transporting re-imagining of Beauty and the Beast and 1930s horror film.</td>
<td>positive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Context</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What has something experienced?</td>
<td>Areas of the Baltic that have experienced eutrophication.</td>
<td>eutrophication</td>
</tr>
<tr>
<td>Who is the illustrator of Cycle of the Werewolf?</td>
<td>Cycle of the Werewolf is a short novel by Stephen King, featuring illustrations by comic book artist Bernie Wrightson.</td>
<td>Bernie Wrightson</td>
</tr>
<tr>
<td>What is the change in dialogue state?</td>
<td>Are there any Eritrean restaurants in town?</td>
<td>Bernie Wrightson, food: Eritrean</td>
</tr>
<tr>
<td>What is the translation from English to SQL?</td>
<td>The table has column names... Tell me what the notes are for South Australia</td>
<td>SELECT notes from table WHERE 'Current Slogan' = 'South Australia'</td>
</tr>
<tr>
<td>Who had given help?</td>
<td>Joan made sure to thank Susan for all the help she had given.</td>
<td>Susan</td>
</tr>
</tbody>
</table>

MRC

• A Highly General Paradigm
 • A task can be solved as a MRC one as long as its input can be formulated as [context, question, answer].

• MRC has been applied to many tasks...
 • entity-relation extraction, coreference resolution, entity linking, dependency parsing, dialog state tracking, event extraction, aspect-based sentiment analysis...

• How to Utilize the Power of Pre-Training?
 • All NLP tasks as open-domain QA?
 • Dense Passage Retriever (DPR) may help (REALM, RAG, ...)
Seq2Seq

- A Highly General and Flexible Paradigm
 - Suitable for complicated tasks (e.g. structured prediction, discontinuous NER, triplet extraction, etc.)

Structured prediction as translation between augmented natural languages. ICLR 2021
Seq2Seq

- A Highly General and Flexible Paradigm
 - Suitable for complicated tasks (e.g. structured prediction, discontinuous NER, triplet extraction, etc.)

- Powered by Pre-training
 - MASS, BART, T5...

- Compatible with (M)LM and MRC

- However...
 - High Latency at Inference Time (Non-autoregressive? Early exiting?)
Outline

• Introduction
• The Seven Paradigms in NLP
• Paradigm Shift in NLP Tasks
• Potential Unified Paradigms
• Conclusion
Conclusion

- (M)LM, aka prompt-based tuning, is exploding in popularity...
 - Does the power come from the pre-trained MLM head?
 - What if the classification head can be replaced with the NSP head, entailment head, or other classification/generation heads?
 - What if pre-training can also boost other paradigms?

- More attention is needed on other promising paradigms
 - **Matching**: less engineering, benefit from supervised data and contrastive learning
 - **MRC**: general, interpretable
 - **Seq2Seq**: compatibility, flexible to handle very complicated tasks
Thank You!

Any question or suggestion is welcome!

txsun19@fudan.edu.cn

https://arxiv.org/abs/2109.12575