A brief Introduction to Entity Linking

Tianxiang Sun (孙天祥)
What is entity linking?

- Entity Linking (EL) aims to link entity mentions in texts to knowledge bases
- Also called Named Entity Disambiguation (NED)
- Non-trivial: entity mentions are usually ambiguous
- A demo

Napoleon [Napoleon] was the emperor of the First French Empire. He was defeated at Waterloo [Battle of Waterloo] by Wellington [Arthur Wellesley, 1st Duke of Wellington] and Blücher [Gebhard Leberecht von Blücher]. He was banned to Saint Helena [Saint Helena], died of stomach cancer, and was buried at Invalides [Les Invalides].
• Formulation
 • Input: document $D = \{w_1, \ldots, w_n\} (+\{m_i\} \text{ if end-to-end})$
 • Output: list of mention-entity pairs $\{(m_i, e_i)\}$

• A EL system typically performs two tasks:
 • NER / Mention Detection (MD)
 • Ent-to-End
 • Disambiguation-only
 • Entity Disambiguation (ED)
 • Candidate selection / generation (usually heuristics)
 • Scoring (Ranking) candidates
 • local & global
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
• Modules in pipeline (Disambiguation-Only)
 • Candidate selection
 • Dictionary
 • Anchors statistic
 • Surface matching heuristic
 • Scoring candidates
 • Entity embedding
 • Local compatibility (modeling the selected mention and its context)
 • Global coherence (modeling other mentions and their candidates)
• Candidate selection
 • Dictionary (Hoffart et al., 2011; Yamada et al., 2016; Cao et al., 2017; Cao et al., 2018)
 • Constructed from knowledge bases, e.g., DBpedia, YAGO, etc.
 • Examples:
 “Apple” for Apple Inc.
 “Big Apple” for New York City
 • Anchors statistic (Ganea et al., 2017; Kolitsas et al., 2018)
 • Mention-entity prior: \(P(e|m) = \frac{|A_{e,m}|}{|A_{*,m}|} \)
 • Computed from mention entity hyperlink count statistic from Wikipedia etc.
 • Also as a feature for disambiguation
 • Surface matching heuristic (Le and Titov, 2019)
• Scoring candidates
 • (Kolitsas et al., 2018)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
• Scoring candidates
 • (Kolitsas et al., 2018)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
• Scoring candidates
 • (Kolitsas et al., 2018)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
Scoring candidates

(Kolitsas et al., 2018)

Entity-mention compatibility

Entity embedding

Context-Independent features

Context-Dependent features

Mention-entity prior

Global features
• Scoring candidates

 • (Kolitsas et al., 2018)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
• Scoring candidates
 • \((\text{Kolitsas et al., 2018})\)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
• Scoring candidates
 • (Kolitsas et al., 2018)
 • Entity-mention compatibility
 • Entity embedding
 • Context-Independent features
 • Context-Dependent features
 • Mention-entity prior
 • Global features
• Scoring candidates – Entity embedding

 • Jointly map words / mentions and entities into the same continuous vector space.

 • (Yamada et al., 2016; Ganea et al., 2017)

1. Skip-gram model (for words)

\[
P(w_{t+j}|w_t) = \frac{\exp(V_{w_t}^T U_{w_{t+j}})}{\sum_{w \in W} \exp(V_{w_t}^T U_w)}
\]

2. KB graph model (extend word embedding matrix V and U for entities)

\[
P(e_o|e_i) = \frac{\exp(V_{e_i}^T U_{e_o})}{\sum_{e \in E} \exp(V_{e_i}^T U_e)}
\]

3. Anchor context model (let words and entities interact with each other via anchors)

\[
P(w_o|e_i) = \frac{\exp(V_{e_i}^T U_{w_o})}{\sum_{w \in W} \exp(V_{e_i}^T U_w)}
\]
• Scoring candidates – Entity embedding
 • Jointly map words / mentions and entities into the same continuous vector space.
 • (Yamada et al., 2016; Ganea et al., 2017)
 • Based on word2vec pre-trained vectors
 \[J(z; e) := \mathbb{E}_{w^+ \mid e} \mathbb{E}_{w^-} [h(z; w^+, w^-)] \]
 \[h(z; w, v) := [\gamma - \langle z, x_w - x_v \rangle]_+ \]
 \[x_e := \arg \min_{z: \|z\|=1} J(z; e) \]

 • where \(w^+ \sim \hat{p}(w \mid e) \propto \#(w, e) \) and \(w^- \sim q(w) \)
 • Let vectors of positive words are closer to the embedding of entity \(e \).
• Scoring candidates – Entity embedding
 • Map words / mentions and entities into different vector space.
 • [(Cao et al., 2017)]
 • Based on Skip-gram and CBOW
 • Learn representations for words, entities, and mention senses.
Scoring candidates

--

Entity embedding

- Jointly map words / mentions and entities into the same continuous vector space.

- (Yamada et al., 2016; Ganea et al., 2017; Cao et al., 2017)

Knowledge Base

Anchor

$$d_1$$: In the 1996 action film [[Independence Day (US)]] [[Independence Day]], the United States military uses alien technology captured …

$$d_2$$: … holds annual [[Independence Day (US)]] celebrations and other festivals …

$$d_3$$: … early Confederate [[Memorial Day]] celebrations were simple, somber occasions for veterans and their families to honor the dead …

Mention Sense Mapping

$$g(July 4th, e_1)$$

Text Representation Learning

$$P(C(w_i | w_i) \cdot P(C(m_1 | s_j^*)$$

$$w_i / s_j^*$$

Text Space

Representation Learning

$$s_{Independence Day (film)}$$

Knowledge Space
• Scoring candidates – Local feature (modeling mentions, contexts, and entities)

 • Mention-entity prior: \(P(e|m) = \frac{|A_{e,m}|}{|A_{*,m}|} \)

 • Context-Independent feature
 • String similarity (Cao et al., 2018)
 • Char BiLSTM (Kolitsas et al., 2018)

 • Context-Dependent feature
 • Average over context words (Yamada et al., 2016; Cao et al., 2017)
 • BiLSTM (Kolitsas et al., 2018; Le and Titov, 2019)
 • Attention (Ganea et al., 2017; Kolitsas et al, 2018; Cao et al., 2018)
- Scoring candidates – Global feature (modeling other mentions and their candidates)
 - Hand-crafted feature like number of shared incoming links... (Hoffart et al., 2011)
 - Bag-of-Words (Yamada et al., 2016)
 - Voting-based (Kolitsas et al, 2018)
 - Markov chain (Delpeuch et al., 2019)
 - CRF (Ganea et al., 2017)
 - GCN (Cao et al., 2018)

All mentions in a document shall be on the same topic!
• Outline

• Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
• Related topics
 • Distant learning
 • Entity typing
• Datasets, metrics, and platform
• A local model (Ganea et al., 2017)

Training objective (max-margin loss)

$$\theta^* = \arg \min_{\theta} \sum_{D \in \mathcal{D}} \sum_{m \in \mathcal{D}} \sum_{e \in \Gamma(m)} g(e, m),$$

$$g(e, m) := [\gamma - \Psi(e^*, m, c) + \Psi(e, m, c)]_+$$
• A global model (Cao et al., 2018)

\[c_{m_i, e_j} = \sum_{w_k \in c(m_i)} \alpha_{k,j} w_k \]

\[\{ \text{sim}(e_j, m_i) | m_i \in N(m_i) \} \]
An end-to-end Model (Kolitsas and Ganea, 2018)

"At training time, for each input document we collect the set M of all (potentially overlapping) token spans m for which $|C(m)| \geq 1.$"
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
• DeepType ([Raiman and Raiman, 2018](#))

• Associate with each entity a series of types (e.g. Person, Place, etc.) that if known, would rule out invalid answers, and therefore ease linking.

<table>
<thead>
<tr>
<th>Entity</th>
<th>jaguar</th>
<th>Jaguar</th>
<th>jungle</th>
<th>jungle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Animal</td>
<td>Road vehicle</td>
<td>Region</td>
<td>Music</td>
</tr>
<tr>
<td>only link Prob.</td>
<td>0.29</td>
<td>0.60</td>
<td>0.35</td>
<td>0.17</td>
</tr>
<tr>
<td>Prob. w/. types</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity</th>
<th>jaguar</th>
<th>Jaguar</th>
<th>highway</th>
<th>Highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Animal</td>
<td>Road vehicle</td>
<td>Physical object</td>
<td>Film</td>
</tr>
<tr>
<td>only link Prob.</td>
<td>0.29</td>
<td>0.60</td>
<td>0.85</td>
<td>0.04</td>
</tr>
<tr>
<td>Prob. w/. types</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
DeepType (Raiman and Raiman, 2018)

- Terminology
 - Relation (e.g. instance of)
 - Type
 A label defined by a relation, e.g., the type applied to all children of Human connected by instance of is IsHuman.
- Type Axis: a set of mutually exclusive types
- Type System: type axes + type labelling function

George Washington \(\rightarrow\) IsA Topic \(\rightarrow\) \{Person, Politics\}

Washington, D.C. \(\rightarrow\) IsA Topic \(\rightarrow\) \{Place, Geography\}
• DeepType (Raiman and Raiman, 2018)

• Type System
 • \(A \): the assignment for the boolean discrete variables that define the type system.
 \(A_i = 1 \) if the \(i \)-th parent-child relation gets included in the type system.
 \[
 A = \{0, 1, 0, 1, 1, \ldots \}
 \]
 • Optimize: heuristic search / stochastic optimization (mixed integer problem)

• Type Classifier
 • \(\theta \): continuous variables that parameterize the classifier to fit to the type system.
 • Optimize: gradient descent

• Objective: solve \(A \) and \(\theta \)
 \[
 \max_A \max_\theta S_{\text{model}}(A, \theta) = \frac{\sum_{(m, e_{GT}, e_m) \in M} \mathbb{1}_{e_{GT}}(e^*)}{|M|}.
 \]
• DeepType (Raiman and Raiman, 2018)
 • Discrete optimization of the type system
 • Define an objective to measure how good a solution is
 • There is a trade-off
 • Disambiguation power
 Measure the improvement of entity linking accuracy of the solution.
 • Learnability
 Measure how learnable the type axes in the selected solution.
 • Regularization

\[
J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + \\
S'_{\text{greedy}} - |\mathcal{A}| \cdot \lambda.
\]
• **DeepType** *(Raiman and Raiman, 2018)*

 • Objective of type system

\[
J(A) = (S_{oracle} - S_{greedy}) \cdot \text{Learnability}(A) + S_{greedy} - |A| \cdot \lambda.
\]

 • Mention-entity prior: \[\mathbb{P}_{\text{Link}}(e|m) = \frac{\text{LinkCount}(m,e)}{\sum_{j \in \mathcal{E}_m} \text{LinkCount}(m,j)}\]

 • Greedy: predicts only according to the mention-entity prior.

 • Oracle: prunes candidate set to only contain entities whose types match those of \(e_i^{GT}\)

\[
\text{Oracle}(m) = \arg\max_{e \in \mathcal{E}_{m,oracle}} \mathbb{P}_{\text{entity}}(e|m, \text{types}(x)).
\]

\[
S_{oracle} = \frac{\sum_{(m,e^{GT},\mathcal{E}_m) \in M} \mathbb{1}_{e^{GT}(\text{Oracle}(m))}}{|M|}.
\]
• DeepType (Raiman and Raiman, 2018)

• Objective of type system

\[J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda. \]

• Learnability

\[\text{Learnability}(\mathcal{A}) = \frac{\sum_{t \in \mathcal{A}} \text{AUC}(t)}{|\mathcal{A}|} \]

• \(\lambda \): per type axis penalty term
• DeepType (Raiman and Raiman, 2018)

 • Objective of type system

 \[J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda. \]

 • Search methodologies

 • Beam search and greedy selection
 • Cross-entropy method
 • Genetic algorithm
 • ...

• DeepType ([Raiman and Raiman, 2018](#))
 • Discrete optimization of the type system
• Type classifier
 • Classify per-token type
- DeepType (Raiman and Raiman, 2018)
 - Discrete optimization of the type system
 - Type classifier
 - Inference
 - Given Input words w_0, \ldots, w_L and mention m covering words w_x, \ldots, w_y
 - Through type classifier, we obtain the type conditional probability for all type axes i: $\{P_i(\cdot|w_x, D), \ldots, P_i(\cdot|w_y, D)\}$
 - Aggregate using max-over-time and obtain $P_{i,*}(\cdot|m, D)$
 - Take the prior into consideration, we get the final entity score

$$s_{e,m,D,A,\theta} = P_{\text{Link}}(e|m) \cdot \left(1 - \beta + \beta \cdot \left\{ \prod_{i=1}^{k} (1 - \alpha_i + \alpha_i \cdot P_{i,*}(t_i|m, D)) \right\} \right).$$
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
• Distant learning
 • Distant supervision (also referred to weak supervision) assumption:

 If two entities participate in a relation, all sentences that mention these two entities express that relation.

 • An example:

 Elevation Partners, the $1.9 billion private equity group that was founded by Roger McNamee

 • However, the assumption can be violated:

 Roger McNamee, a managing director at Elevation Partners, ...
• Distant learning

• When aligning Freebase to Wikipedia and New York Times...

Table 1. Percentage of times a related pair of entities is mentioned in the same sentence, but where the sentence does not express the corresponding relation

<table>
<thead>
<tr>
<th>Relation Type</th>
<th>New York Times</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>nationality</td>
<td>38%</td>
<td>20%</td>
</tr>
<tr>
<td>place_of_birth</td>
<td>35%</td>
<td>20%</td>
</tr>
<tr>
<td>contains</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

• ([Riedel et al., 2010](#)) proposed a relaxed assumption:

If two entities participate in a relation, at least one sentence that mentions these two entities might express that relation.
• Distant learning in entity linking (**Le and Titov, 2019**)

 • Construct distant supervision: surface matching heuristics (measure overlap)

 • Positive lists: top candidates from the matching heuristics

 • Negative lists: randomly sampled sets of entities

 • Multi-Instance Learning (MIL): find the entity should be linked

Can **Bill Clinton** really emerge as a beloved father figure to a frazzled **America**?

<table>
<thead>
<tr>
<th>Bill_Clinton (TV episode)</th>
<th>America (song)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill_Clinton (president)</td>
<td>Volunteers_of_America</td>
</tr>
<tr>
<td>Bill_Clinton's_victory</td>
<td>United_States_of_America (nation)</td>
</tr>
<tr>
<td>Presidency_of_Bill_Clinton</td>
<td>United_States_of_America (music track)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- name-matched candidates
- knowledge-base triples
- name-matched candidates
• Distant learning in entity linking (Le and Titov, 2019)

• During training, we have $\langle m, c, E^+, E^- \rangle$, in testing, $E^- = \emptyset$.

• MIL: we want to train the model to score at least one candidate in E^+ higher than any candidate in E^-. To achieve this, we employ a max-margin loss

$$l(m, c) = \left[\max_{e \in E^-} g(e, m, c) + \delta - \max_{e \in E^+} g(e, m, c) \right]_+$$

$$L_1 = \sum_{(m, c) \in D} l(m, c)$$

• Recall that many data points are noisy. E^+ may not contain the correct entity.
• Distant learning in entity linking (Le and Titov, 2019)

• Representation for E^+

 \[e_{E^+} = \sum_{e \in E^+} \alpha_e e \]

• Noise detection

 \[p_N(1|m, c, E^+) = \sigma\left(\frac{\text{FFN}_f([e_{E^+}, f_{h-1}, b_{h-1}, f_k, b_k])}{T}\right) \]

• Use a binary classifier

• Training

 • Down-weight potentially noisy data points. New loss:

\[L_2 = \sum_{(m,c) \in D} p_N(0|m, c, E^+)l(m, c) + \]

\[\eta \times \text{KL}\left(\frac{\sum_{(m,c) \in D} p_N(\cdot|m, c, E^+)}{|D|} | p_N^*\right) \]

• Testing: with / without noise detector
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
- Entity Typing
- FIGER ([Ling and Weld, 2012](#))
- Fine-grained NER task
- Hierarchical labels
 - `person/`
 - `person/actor`
 - `location/`
 - `location/city`

person
actor
architect
artist
athlete
author
coach
director
doctor
engineer
monarch
musician
politician
religious_leader
soldier
terrorist
organization

airline
company
educational_institution
fraternity_sorority
sports_league
sports_team
terrorist_organization
government_agency
government
political_party
educational_department
military
news_agency
location

body_of_water
city
country
county
province
railway
road
bridge
mountain
glacier
astral_body
cemetery
park
product

camera
engine
airplane
car
ship
spacecraft
train
mobile_phone
computer
software
game
instrument
weapon
art

written_work
film
newspaper
play
music
event

military_conflict
attack
natural_disaster
election
sports_event
protest
terrorist_attack
building

airport
dam
hospital
hotel
library
power_station
restaurant
sports_facility
theater
time
color
award
educational_degree
title
law
ethnicity
language
religion
god
chemicalThing

chemical_thing
biological_thing
medical_treatment
disease
symptom
drug
body_part
living_thing
animal
food
website

website
broadcast_network
broadcast_program
tv_channel
currency
stock_exchange
algorithm
programming_language
transit_system
transit_line
• Entity Typing for Entity Linking (ET4EL) (Onoe and Durrett, 2019)
 • Alleviate overfitting
 • Construct entity typing dataset using hyperlinks and Wiki categories
 • Two parts:
 • Entity typing: \(\Phi : (m, s) \rightarrow T. \)
 • Entity linking: \(e = \Omega(\Phi(m, s), C'). \)
• Entity Typing for Entity Linking (ET4EL) (Onoe and Durrett, 2019)

• Entity linking prediction (heuristic, untrained)

 • Ω is defined as the sum of probabilities for each type

\[
e'_c = \sum_i t_i \cdot 1_{T_c} (V^t_i)
\]

\[
e = \arg \max_e (e'_1, \ldots, e'_{|C|})
\]

• No need to access the labeled entity linking data.
• Outline
 • Models
 • Modules
 • Neural models
 • Symbol-neural hybrid model
 • Related topics
 • Distant learning
 • Entity typing
 • Datasets, metrics, and platform
• Datasets
 • AIDA-CoNLL (Hoffart et al., 2011)
 • Text data: CoNLL 2003 NER task
 • Knowledge base: YAGO
 • TAC 2010 (Ji et al., 2010)
 • Text data: news articles from various agencies and Web log data
 • WikiDisamb30 (Raiman and Raiman, 2018)
• Platform
 • GERBIL
• Metrics
 • Disambiguation-only
 • Micro accuracy
 • Macro accuracy
 • End-to-End
 • Micro F1
 • Macro F1
 • InKB v.s. NIL ("unlinkable")
Q & A