A brief Introduction to Entity Linking

Tianxiang Sun (孙天祥)

- What is entity linking?
 - Entity Linking (EL) aims to link entity mentions in texts to knowledge bases
 - Also called Named Entity Disambiguation (NED)
 - Non-trivial: entity mentions are usually ambiguous
 - A <u>demo</u>

[Napoleon] was the emperor of the First French Empire. He was defeated at waterloo [Battle of Waterloo] by Wellington [Arthur Wellesley, 1st Duke of Wellington] and Blücher [Gebhard Leberecht von Blücher]. He was banned to Saint Helena [Saint Helena], died of stomach cancer, and was buried at Invalides [Les Invalides].

- Formulation
 - Input: document $D = \{w_1, \dots, w_n\}$ (+ $\{m_i\}$ if end-to-end)
 - Output: list of mention-entity pairs $\{(m_i, e_i)\}$
- A EL system typically performs two tasks:
 - NER / Mention Detection (MD)
 - Ent-to-End
 - Disambiguation-only
 - Entity Disambiguation (ED)
 - Candidate selection / generation (usually heuristics)
 - Scoring (Ranking) candidates
 - local & global

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- Modules in pipeline (Disambiguation-Only)
 - Candidate selection
 - Dictionary
 - Anchors statistic
 - Surface matching heuristic
 - Scoring candidates
 - Entity embedding
 - Local compatibility (modeling the selected mention and its context)
 - Global coherence (modeling other mentions and their candidates)

- Candidate selection
 - Dictionary (Hoffart et al., 2011; Yamada et al., 2016; Cao et al., 2017; Cao et al., 2018)
 - Constructed from knowledge bases, e.g., DBpedia, YAGO, etc.
 - Examples:

```
"Apple" for Apple Inc.

"Big Apple" for New York City
```

- Anchors statistic (Ganea et al., 2017; Kolitsas et al., 2018)
 - Mention-entity prior: $P(e|m) = |A_{e,m}|/|A_{*,m}|$
 - Computed from mention entity hyperlink count statistic from Wikipedia etc.
 - Also as a feature for disambiguation
- Surface matching heuristic (<u>Le and Titov, 2019</u>)

- Scoring candidates
 - (Kolitsas et al., 2018)
 - Entity-mention compatibility
 - Entity embedding
 - Context-Independent features
 - Context-Dependent features
 - Mention-entity prior
 - Global features

- Kolitsas et al., 2018
- Entity-mention compatibility final local score
- Entity embedding
- Context-Independent features
- Context-Dependent features
- Mention-entity prior
- Global features

- Kolitsas et al., 2018
- Entity-mention compatibility final local score
- Entity embedding
- Context-Independent features
- Context-Dependent features
- Mention-entity prior
- Global features

- (Kolitsas et al., 2018)
- Entity-mention compatibility final local score

embeddings

bidirectional LSTM

- Entity embedding
- Context-Independent features
- **Context-Dependent features**
- Mention-entity prior
- Global features

- (Kolitsas et al., 2018)
- Entity-mention compatibility final local score

context-aware word embeddings

bidirectional LSTM

 v_k

- Entity embedding
- Context-Independent features
- Context-Dependent features
- Mention-entity prior
- Global features

- Kolitsas et al., 2018
- Entity-mention compatibility final local score
- Entity embedding
- Context-Independent features
- Context-Dependent features
- Mention-entity prior
- Global features

- Scoring candidates
 - (Kolitsas et al., 2018)
 - Entity-mention compatibility firm
 - Entity embedding
 - Context-Independent features
 - Context-Dependent features
 - Mention-entity prior
 - Global features

- Scoring candidates Entity embedding
 - Jointly map words / mentions and entities into the same continuous vector space.
 - Yamada et al., 2016; Ganea et al., 2017
 - 1. Skip-gram model (for words)

$$P(w_{t+j}|w_t) = \frac{\exp(\mathbf{V}_{w_t}^{\top} \mathbf{U}_{w_{t+j}})}{\sum_{w \in W} \exp(\mathbf{V}_{w_t}^{\top} \mathbf{U}_w)}$$

2. KB graph model (extend word embedding matrix V and U for entities)

$$P(e_o|e_i) = \frac{\exp(\mathbf{V}_{e_i}^{\mathsf{T}} \mathbf{U}_{e_o})}{\sum_{e \in E} \exp(\mathbf{V}_{e_i}^{\mathsf{T}} \mathbf{U}_e)}$$

3. Anchor context model (let words and entities interact with each other via anchors)

$$P(w_o|e_i) = \frac{\exp(\mathbf{V}_{e_i}^{\top} \mathbf{U}_{w_o})}{\sum_{w \in W} \exp(\mathbf{V}_{e_i}^{\top} \mathbf{U}_w)}$$

- Scoring candidates Entity embedding
 - Jointly map words / mentions and entities into the same continuous vector space.
 - (Yamada et al., 2016; Ganea et al., 2017)
 - Based on word2vec pre-trained vectors

$$J(\mathbf{z}; e) := \mathbb{E}_{w^{+}|e} \mathbb{E}_{w^{-}} \left[h\left(\mathbf{z}; w^{+}, w^{-}\right) \right]$$

$$h(\mathbf{z}; w, v) := \left[\gamma - \langle \mathbf{z}, \mathbf{x}_{w} - \mathbf{x}_{v} \rangle \right]_{+}$$

$$\mathbf{x}_{e} := \underset{\mathbf{z}: ||\mathbf{z}|| = 1}{\min} J(\mathbf{z}; e)$$

- where $w^+ \sim \hat{p}(w|e) \propto \#(w,e)$ and $w^- \sim q(w)$
- Let vectors of positive words are closer to the embedding of entity e.

- Scoring candidates Entity embedding
 - Map words / mentions and entities into different vector space.
 - Cao et al., 2017
 - Based on Skip-gram and CBOW
 - Learn representations for words, entities, and mention senses.

- Scoring candidates Local feature (modeling mentions, contexts, and entities)
 - Mention-entity prior: $P(e|m) = |A_{e,m}|/|A_{*,m}|$
 - Context-Independent feature
 - String similarity (Cao et al., 2018)
 - Char BiLSTM (Kolitsas et al., 2018)
 - Context-Dependent feature
 - Average over context words (<u>Yamada et al., 2016</u>; <u>Cao et al., 2017</u>)
 - BiLSTM (Kolitsas et al., 2018; Le and Titov, 2019)
 - Attention (Ganea et al., 2017; Kolitsas et al, 2018; Cao et al., 2018)

- Scoring candidates Global feature (modeling other mentions and their candidates)
 - Hand-crafted feature like number of shared incoming links... (Hoffart et al., 2011)
 - Bag-of-Words (Yamada et al., 2016)
 - Voting-based (Kolitsas et al, 2018)
 - Markov chain (<u>Delpeuch et al., 2019</u>)
 - CRF (Ganea et al., 2017)
 - GCN (Cao et al., 2018)

All mentions in a document shall be on the same topic!

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

• A local model (Ganea et al., 2017)

Training objective (max-margin loss)

A global model (Cao et al., 2018)

• An end-to-end Model (Kolitsas and Ganea, 2018)

"At training time, for each input document we collect the set M of all (potentially overlapping) token spans m for which $|C(m)| \ge 1$."

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- DeepType (Raiman and Raiman, 2018)
 - Associate with each entity a series of types (e.g. Person, Place, etc.) that if known, would rule out invalid answers, and therefore ease linking.

Entity	jaguar	Jaguar	jungle	jungle	jaguar	Jaguar	highway	Highway
Type	Animal	Road vehicle	Region	Music	Animal	Road vehicle	Physical Object	Film
only link Prob.	0.29	0.60	0.35	0.17	0.29	0.60	0.85	0.04
Prob. w/. types	1.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0

- DeepType (<u>Raiman and Raiman, 2018</u>)
 - Terminology
 - Relation (e.g. instance of)
 - Type

A label defined by a relation, e.g., the type applied to all children of Human connected by instance of is IsHuman.

- Type Axis: a set of mutually exclusive types
- Type System: type axes + type labelling function

- DeepType (Raiman and Raiman, 2018)
 - Type System
 - A: the assignment for the boolean discrete variables that define the type system.

 $A_i = 1$ if the *i*-th parent-child relation gets included in the type system.

$$A = \{0, 1, 0, 1, 1, \dots\}$$

- Optimize: heuristic search / stochastic optimization (mixed integer problem)
- Type Classifier
 - θ : continuous variables that parameterize the classifier to fit to the type system.
 - Optimize: gradient descent
- Objective: solve A and θ $\max_{\mathcal{A}} \max_{\theta} S_{\mathrm{model}}(\mathcal{A}, \theta) = \frac{\sum\limits_{(m, e_{\mathrm{GT}}, \mathcal{E}_m) \in M} \mathbb{1}_{e_{\mathrm{GT}}}(e^*)}{|M|}.$

- DeepType (<u>Raiman and Raiman, 2018</u>)
 - Discrete optimization of the type system
 - Define an objective to measure how good a solution is
 - There is a trade-off
 - Disambiguation power

Measure the improvement of entity linking accuracy of the solution.

Learnability

Measure how learnable the type axes in the selected solution.

Regularization

$$J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda.$$

- DeepType (Raiman and Raiman, 2018)
 - Objective of type system

$$J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda.$$

- Mention-entity prior: $\mathbb{P}_{\mathrm{Link}}(e|m) = \frac{\mathrm{LinkCount}(m,e)}{\sum_{j \in \mathcal{E}_m} \mathrm{LinkCount}(m,j)}$
- Greedy: predicts only according to the mention-entity prior.
- Oracle: prunes candidate set to only contain entities whose types match those of $\,e_i^{
 m GT}$

$$Oracle(m) = \underset{e \in \mathcal{E}_{m,oracle}}{\operatorname{argmax}} \mathbb{P}_{\text{entity}}(e|m, \text{types}(x)).$$

$$S_{\text{oracle}} = \frac{\sum_{(m, e_{\text{GT}}, \mathcal{E}_m) \in M} \mathbb{1}_{e_{\text{GT}}}(\text{Oracle}(m))}{|M|}.$$

- DeepType (Raiman and Raiman, 2018)
 - Objective of type system

$$J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda.$$

Learnability

Learnability(
$$\mathcal{A}$$
) = $\frac{\sum_{t \in \mathcal{A}} \text{AUC}(t)}{|\mathcal{A}|}$

• λ : per type axis penalty term

- DeepType (<u>Raiman and Raiman, 2018</u>)
 - Objective of type system

$$J(\mathcal{A}) = (S_{\text{oracle}} - S_{\text{greedy}}) \cdot \text{Learnability}(\mathcal{A}) + S_{\text{greedy}} - |\mathcal{A}| \cdot \lambda.$$

- Search methodologies
 - Beam search and greedy selection
 - Cross-entropy method
 - Genetic algorithm
 - ...

- DeepType (<u>Raiman and Raiman, 2018</u>)
 - Discrete optimization of the type system
 - Type classifier
 - Classify per-token type

- DeepType (Raiman and Raiman, 2018)
 - Discrete optimization of the type system
 - Type classifier
 - Inference
 - Given Input words w_0,\ldots,w_L and mention m covering words w_x,\ldots,w_y
 - Through type classifier, we obtain the type conditional probability for all type axes i: $\{\mathbb{P}_i(\cdot|w_x,D),\ldots,\mathbb{P}_i(\cdot|w_y,D)\}$
 - Aggregate using max-over-time and obtain $\mathbb{P}_{i,*}(\cdot|m,D)$
 - Take the prior into consideration, we get the final entity score

$$s_{e,m,D,\mathcal{A},\theta} = \mathbb{P}_{\text{Link}}(e|m) \cdot \left(1 - \beta + \beta \cdot \left\{ \prod_{i=1}^{k} (1 - \alpha_i + \alpha_i \cdot \mathbb{P}_{i,*}(t_i|m, D)) \right\} \right).$$

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- Distant learning
 - Distant supervision (also referred to weak supervision) assumption:

 If two entities participate in a relation, all sentences that mention these two entities express that relation.
 - An example:

Elevation Partners, the \$ 1.9 billion private equity group that was <u>founded</u> by

Roger McNamee

However, the assumption can be violated:

Roger McNamee, a managing director at Elevation Partners, ...

- Distant learning
 - When aligning Freebase to Wikipedia and New York Times...

Table 1. Percentage of times a related pair of entities is mentioned in the same sentence, but where the sentence does not express the corresponding relation

Relation Type	New York Times	Wikipedia
nationality	38%	20%
place_of_birth	35%	20%
contains	20%	10%

• (Riedel et al., 2010) proposed a relaxed assumption:

If two entities participate in a relation, **at least one sentence** that mentions these two entities might express that relation.

- Distant learning in entity linking (<u>Le and Titov, 2019</u>)
 - Construct distant supervision: surface matching heuristics (measure overlap)
 - Positive lists: top candidates from the matching heuristics
 - Negative lists: randomly sampled sets of entities
 - Multi-Instance Learning (MIL): find the entity should be linked

```
Can Bill Clinton really emerge as a beloved father figure to a frazzled America?

Bill_Clinton (TV episode)

Bill_Clinton (president)

Bill_Clinton's_victory

Presidency_of_Bill_Clinton

name-matched candidates

Nounteers_of_America (nation)

United_States_of_America (music track)

...

name-matched candidates

Nouledge-base triples

name-matched candidates
```

- Distant learning in entity linking (<u>Le and Titov, 2019</u>)
 - During training, we have $\langle m, c, E^+, E^- \rangle$, in testing, $E^- = \emptyset$.
 - MIL: we want to train the model to score at least one candidate in E^+ higher than any candidate in E^- . To achieve this, we employ a max-margin loss

$$l(m,c) = [\max_{e \in E^{-}} g(e, m, c) + \delta - \max_{e \in E^{+}} g(e, m, c)]_{+}$$

$$L_{1} = \sum_{(m,c) \in D} l(m,c)$$

• Recall that many data points are noisy. E^+ may not contain the correct entity.

- Distant learning in entity linking (Le and Titov, 2019)
 - Representation for E^+

• Use attention
$$\mathbf{e}_{E^+} = \sum_{e \in E^+} \alpha_e \mathbf{e}$$

- Noise detection
 - Use a binary classifier
- $p_N(1|m, c, E^+) = \sigma\left(\frac{\text{FFN}_f([\mathbf{e}_{E^+}, \mathbf{f}_{h-1}, \mathbf{b}_{h-1}, \mathbf{f}_k, \mathbf{b}_k])}{T}\right)$

- Training
 - Down-weight potentially noisy data points. New loss:

$$L_{2} = \sum_{(m,c)\in D} p_{N}(0|m,c,E^{+})l(m,c) +$$

$$\eta \times \text{KL}(\frac{\sum_{(m,c)\in D} p_{N}(\cdot|m,c,E^{+})}{|D|}|p_{N}^{*})$$

Testing: with / without noise detector

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- Entity Typing
 - FIGER (Ling and Weld, 2012)
 - Fine-grained NER task
 - Hierarchical labels

```
person/
person/actor
location/
location/city
```

person actor architect artist athlete author coach director		doctor engineer monarch musician politician religious_leader soldier terrorist		organization airline company educational_institution fraternity_sorority sports_league sports_team		terrorist_organization government_agency government political_party educational_department military news_agency		
location city country	islan mou	nd eng untain air		oduct gine plane		camera mobile_phone computer	art film play	written_work newspaper music
county province railway road bridge	glacier astral_body cemetery park		car ship spacecra train		game ft instru	software game instrument weapon		military_conflict natural_disaster sports_event terrorist_attack
building airport dam hospital hotel library power_stat restaurant sports_faci theater		time color award educationa title law ethnicity language religion god	l_deg	ree	biolo medi disea symp drug body	otom _part g_thing	broadcas tv_chanr currency stock_ex algorithr	change n ming_language system

- Entity Typing for Entity Linking (ET4EL) (Onoe and Durrett, 2019)
 - Alleviate overfitting
 - Construct entity typing dataset using hyperlinks and Wiki categories
 - Two parts:
 - Entity typing: $\Phi:(m,s)\to T$.
 - Entity linking: $e = \Omega(\Phi(m,s),C)$.

- Entity Typing for Entity Linking (ET4EL) (Onoe and Durrett, 2019)
 - Entity linking prediction (heuristic, untrained)
 - Ω is defined as the sum of probabilities for each type

$$e'_{c} = \sum_{i} t_{i} \cdot \mathbb{1}_{T_{c}} \left(V_{i}^{t} \right)$$

$$e = \arg \max_{e} \left(e'_{1}, \dots, e'_{|C|} \right)$$

No need to access the labeled entity linking data.

- Outline
 - Models
 - Modules
 - Neural models
 - Symbol-neural hybrid model
 - Related topics
 - Distant learning
 - Entity typing
 - Datasets, metrics, and platform

- Datasets
 - AIDA-CoNLL (Hoffart et al., 2011)
 - Text data: CoNLL 2003 NER task
 - Knowledge base: YAGO
 - TAC 2010 (Ji et al., 2010)
 - Text data: news articles from various agencies and Web log data
 - WikiDisamb30 (Raiman and Raiman, 2018)
- Platform
 - **GERBIL**

- Metrics
 - Disambiguation-only
 - Micro accuracy
 - Macro accuracy
 - End-to-End
 - Micro F1
 - Macro F1
 - InKB v.s. NIL ("unlinkable")

Q & A