

Black-Box Tuning for Language-Model-as-a-Service

Tianxiang Sun

School of Computer Science, Fudan University

https://txsun1997.github.io/

Our Team

Tianxiang Sun¹

Yunfan Shao¹

Hong Qian²

Xipeng Qiu^{1,3}

¹ Fudan University ² East China Normal University ³ Peng Cheng Laboratory

Pre-train, then fine-tune

When language models become larger...

In the era of large language models (LLMs)...

- **Servers** often do not open-source the weights of LLMs due to commercial reasons
- Users usually do not have enough resources to run LLMs

The emergent ability of LLMs

- Manually craft text prompt to query LLMs
- In-context learning (GPT-3, Brown et al., 2020)

When language models become larger...

The three settings we explore for in-context learning

Zero-shot

In the era of large language

- Servers often do not ope commercial reasons
- Users usually do not hav

The emergent ability of LLN

- Manually craft text prom
- In-context learning (GPT-

The model predicts the answer given only a natural language

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Translate English to French:	task description
sea otter => loutre de mer	example
cheese =>	←— prompt

In addition to the task description, the model sees a few

examples of the task. No gradient updates are performed.

Few-shot

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Language-Model-as-a-Service (LMaaS)

LMaaS has encouraged a lot of apps

New Products Describe a layout. See all \rightarrow Just describe any layout you want, and it'll try to render below! Recently added GPT-3 apps Select product A div that contains 3 buttons each witl a random color **Customer Service** Humor Collections C \bigcirc ActiveChat.ai Al Buddv Al Guru New Popular Upcoming LegalTech Developer Tools - A AskBrian aiLawDocs AskBrian Azure OpenAl Service Requested Categories Generative Art Image captioning Healthcare All 319 Botte 6 Botto ClipClap Curai A/B Testing 2 Ad Generation 3 Equation description x squared plus two times x AI Copywriting 37 **Code Generation** API Design Summarization X DELV Delv Al Design an API with ... DeepGenX Al Writing Assistants 1 **API Design** 1 $x^{2} + 2x$ Avatars 1 Recruiting Language Learning Research Assistants ٠ O • Blog writing 2 Drafted Duolingo Elicit **Book Writing** 1

https://gpt3demo.com/

However...

The performance of manual prompt and in-context learning highly depend on the choice of prompt and demonstrations, and lags far behind model tuning.

Zhao et al. Calibrate Before Use: Improving Few-Shot Performance of Language Models. ICML 2021

To make LLMs benefit more people...

Can we optimize the prompt with the API feedback? (without expensive backpropagation)

Objective:

$$\mathbf{p}^{\star} = \arg\min_{\mathbf{p}\in\mathcal{P}}\mathcal{L}(f(\mathbf{p};\tilde{X}),\tilde{Y})$$

A challenge of high dimensionality

Considering optimization of the continuous prompt, the dimensionality can be tens of thousands (say we are going to optimize 50 prompt tokens, each with 1k dimensions, there are 50k parameters to be optimized.)

Derivative-free optimization (DFO) can struggle with high-dimensional problems, **except for** the case when the problem has a low intrinsic dimensionality.

Note: Intrinsic dimensionality is the minimal number of parameters needed to represent the problem

A challenge of high dimensionality

Considering optimization of the continuous prompt, the dimensionality

Wang et al. Bayesian optimization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 2016

Fortunately...

LLMs have a very low intrinsic dimensionality!

Aghajanyan et al. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. ACL 2021

Black-Box Tuning

Experiments

16-shot (per class) learning with RoBERTa-large (350M)

Method	SST-2 acc	Yelp P. acc	AG's News acc	DBPedia acc	MRPC F1	SNLI acc	RTE acc	Avg.	
Gradient-Based Methods									
Prompt Tuning	68.23 ± 3.78	61.02 ± 6.65	84.81 ± 0.66	87.75 ± 1.48	51.61 ±8.67	36.13 ±1.51	54.69 ±3.79	63.46	
+ Pre-trained prompt	/	/	/	/	77.48 ± 4.85	64.55 ± 2.43	77.13 ± 0.83	74.42	
P-Tuning v2	64.33 ± 3.05	92.63 ± 1.39	83.46 ± 1.01	97.05 ± 0.41	68.14 ± 3.89	36.89 ± 0.79	50.78 ± 2.28	70.47	
Model Tuning	85.39 ± 2.84	91.82 ± 0.79	86.36 ± 1.85	97.98 ± 0.14	77.35 ± 5.70	54.64 ± 5.29	58.60 ± 6.21	78.88	
Gradient-Free Methods									
Manual Prompt	79.82	89.65	76.96	41.33	67.40	31.11	51.62	62.56	
In-Context Learning	79.79 ± 3.06	85.38 ± 3.92	62.21 ± 13.46	34.83 ± 7.59	45.81 ± 6.67	47.11 ± 0.63	60.36 ± 1.56	59.36	
Feature-MLP	64.80 ± 1.78	79.20 ± 2.26	70.77 ± 0.67	87.78 ± 0.61	68.40 ± 0.86	42.01 ± 0.33	53.43 ± 1.57	66.63	
Feature-BiLSTM	65.95 ± 0.99	74.68 ± 0.10	77.28 ± 2.83	90.37 ± 3.10	71.55 ± 7.10	46.02 ± 0.38	52.17 ± 0.25	68.29	
Black-Box Tuning	89.56 ± 0.25	91.50 ± 0.16	81.51 ± 0.79	87.80 ± 1.53	61.56 ± 4.34	46.58 ± 1.33	52.59 ± 2.21	73.01	
+ Pre-trained prompt	/	/	/	/	75.51 ± 5.54	83.83 ± 0.21	77.62 ± 1.30	83.90	

Experiments

Detailed comparison on SST-2 and AG News

	Deployment-	As-A-	Test	Training	Memory Footprint		Upload	Download		
	Efficient	Service	Accuracy	Time	User	Server	per query	per query		
SST-2 (max sequence length: 47)										
Prompt Tuning	\checkmark	×	72.6	15.9 mins	-	5.3 GB	-	-		
Model Tuning	×	×	87.8	9.8 mins	-	7.3 GB	-	-		
Feature-MLP	\checkmark	\checkmark	63.8	7.0 mins	20 MB	2.8 GB	4 KB	128 KB		
Feature-BiLSTM	\checkmark	\checkmark	66.2	9.3 mins	410 MB	2.8 GB	4 KB	6016 KB		
Black-Box Tuning	\checkmark	\checkmark	89.4	10.1 (6.1*) mins	30 MB	3.0 GB	6 KB	0.25 KB		
AG's News (max sequence length: 107)										
Prompt Tuning	\checkmark	×	84.0	30.2 mins	-	7.7 GB	-	-		
Model Tuning	×	×	88.4	13.1 mins	-	7.3 GB	-	-		
Feature-MLP	\checkmark	\checkmark	71.0	13.5 mins	20 MB	3.6 GB	20 KB	256 KB		
Feature-BiLSTM	\checkmark	\checkmark	73.1	19.7 mins	500 MB	3.6 GB	20 KB	27392 KB		
Black-Box Tuning	\checkmark	\checkmark	82.6	21.0 (17.7*) mins	30 MB	4.6 GB	22 KB	1 KB		

A Gradient-Free Future for LLMs?

Limitations of black-box tuning:

- Slow convergence on many-label classification (e.g., DBPedia)
- Requirement of prompt pre-training (gradient) on difficult tasks (e.g., SNLI)

Current version of black-box tuning is just a lower bound:

- Prompt/verbalizer engineering, prompt ensemble, prompt pre-training...

Code is publicly available!

- https://github.com/txsun1997/Black-Box-Tuning

Thanks!

Tianxiang Sun

School of Computer Science, Fudan University

https://txsun1997.github.io/