
A Simple Hash-Based Early Exiting Approach
For Language Understanding and Generation

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, 

Yilong He, Yuan Ni, Guotong Xie, Xuanjing Huang, Xipeng Qiu

Fudan University & Ping An Healthcare Technology

Findings of ACL 2022



Background

• Early Exiting
• Allows instances to exit at early layers according to the estimation of difficulty



Background

• Early Exiting
• Allows instances to exit at early layers according to the estimation of difficulty

• How to Estimate Instance Difficulty?
• Heuristic metrics, e.g. entropy, maximum softmax score…

• Examples: DeeBERT, FastBERT, PABEE, etc.

• Problem: Suffers from generalization and thresholding tuning.

• Learning to predict instance difficulty
• Example: Learn-to-exit (Xin et al., EACL 2021)

• Problem: Can instance difficulty really be learned? (Our initial motivation)



Can Instance Difficulty Be Learned?

• How Can We Say Instance Difficulty Can/Cannot Be Learned?
• Step 0: Define instance difficulty.
• Step 1: We need some “difficulty” datasets. 
• Step 2: We use the training set to train a neural model and see if it can 

generalize to the test set.

• Step 0 - Two Kinds of Difficulty
• Human-defined difficulty

• Measures how difficult for human to judge its label.

• Model-defined difficulty
• Measures how difficult for a well-trained model to predict its label.



Human-defined Difficulty

• Step 1: Data Construction
• In SNLI, the labels are determined by the majority of the crowd-sourced 

annotators. If there is no majority for an instance, its label would be “unknown".
• We collect 1,119 “unknown” instances as difficulty instances, and randomly 

sample 1,119 simple instances from the SNLI training set.
• Now, we have 2,238 instances with two labels (simple or difficult), and randomly 

sample 1,238 instances with balanced labels as training set and use the rest 1k 
instances as the test set.

• Step 2: Training Models to Predict Instance Difficulty
• We train a BERT-base-uncased with a linear classifier on the top.



Human-defined Difficulty

• Can We Learn to Predict Human-defined Difficulty?

• Almost no!



Model-defined Difficulty

• Step 1: Data Construction
• Idea: An instance can be defined as a difficult one if it can not be correctly 

predicted by a well-trained model.

SNLI 
Training set

OntoNotes NER 
Training set Multi-Exit BERT

OntoNotes NER 
Dev set

SNLI 
Dev set

[0, 1, 0, 0, …, 1]
[0, 1, 1, 1, …, 1]
[0, 0, 1, 1, …, 0]

…

[[0, …, 1], …, [1, …, 1]]
[[0, …, 0], …, [0, …, 1]]
[[1, …, 1], …, [1, …, 1]]

…

Train Annotate
Sentence-level 
Difficulty Labels

Token-Level 
Difficulty Labels



Model-defined Difficulty

• Step 1: Data Construction
• Idea: An instance can be defined as a difficult one if it can not be correctly 

predicted by a well-trained model.

• Step 2: Training Models to Predict Instance Difficulty
• Majority: Always predicts the majority class for each label.
• Linear-M: A multi-classification linear layer that takes as input the average 

pooled word embeddings and outputs the exiting layer (1~12)
• Linear-B: A binary classification linear layer that takes as input the hidden states 

at each BERT layer and outputs the difficulty label at this layer (0/1)
• LSTM: Takes as input the instance and outputs the exiting layer (1~12)
• BERT: Takes as input the instance and outputs the exiting layer (1~12)



Model-defined Difficulty

• Can We Learn to Predict Model-defined Difficulty?

• Almost no!



HashEE: Hash Early Exiting

• What Is Unnecessary and What Works?
• On the one hand, our experiments show that instance difficulty is hard to be 

predicted.
• On the other hand, learn-to-exit methods have achieved competitive results.
• There must be something works and it has nothing to do with estimating 

instance difficulty.
• Let’s take a closer look at the learn-to-exit module

𝑃 𝑦 𝑥 = ෍

𝑑∈𝐷

𝑃 𝑦 𝑥, 𝑑 𝑃(𝑑|𝑥)

Learn-to-
exit module

Difficulty
(implies Architecture)



HashEE: Hash Early Exiting

• What Is Unnecessary and What Works?
• On the one hand, our experiments show that instance difficulty is hard to be 

predicted.
• On the other hand, learn-to-exit methods have achieved competitive results.
• There must be something works and it has nothing to do with estimating 

instance difficulty.
• Let’s take a closer look at the learn-to-exit module
• Consistency hypothesis: If a training instance 𝑥𝑖 is predicted to exit at layer 𝑙, 

then an inference instance 𝑥𝑗 that is similar with 𝑥𝑖 should exit at layer 𝑙, too.

Can we just replace the neural learn-to-exit module with a simple hash function?



HashEE: Hash Early Exiting

• HashEE
• Assign tokens to fixed exiting layers using a hash function.
• Considered hash functions:

• Random Hash

• Frequency Hash

• MI Hash

• Clustered Hash

• Can be used for both
NLU and NLG



Experiments on NLU

• State-of-the-art on ELUE (A Benchmark for Efficient NLP)



Experiments on NLU

• Effect of Hash Functions



Experiments on NLU

• Effect of Backbones



Experiments on NLU

• Comparison of Actual Inference Time



Experiments on NLG

• Results on 4 Summarization Datasets



Thanks!


