A Simple Hash-Based Early Exiting Approach
For Language Understanding and Generation

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu,
Yilong He, Yuan Ni, Guotong Xie, Xuanjing Huang, Xipeng Qiu
Fudan University & Ping An Healthcare Technology
Findings of ACL 2022

Background

* Early Exiting

* Allows instances to exit at early layers according to the estimation of difficulty

h, Intermediate

£ Prediction

0 /

hy f

Y Confident?

— L@ g

hs

f2 3 Confident?

3 X—{¢ -

h,

X f Confident?

- —X—o—

hl \

T Difficulty
Iest Sample Measurement

Background

* Early Exiting

* Allows instances to exit at early layers according to the estimation of difficulty

* How to Estimate Instance Difficulty?

* Heuristic metrics, e.g. entropy, maximum softmax score::
* Examples: DeeBERT, FastBERT, PABEE, etc.
* Problem: Suffers from generalization and thresholding tuning.
* Learning to predict instance difficulty
* Example: Learn-to-exit (Xin et al., EACL 2021)
* Problem: Can instance difficulty really be learned? (Our initial motivation)

Can Instance Difficulty Be Learned?

* How Can We Say Instance Difficulty Can/Cannot Be Learned?
* Step 0: Define instance difficulty.
* Step 1. We need some “difficulty” datasets.

* Step 2: We use the training set to train a neural model and see If it can
generalize to the test set.

* Step 0 - Two Kinds of Difficulty

* Human-defined difficulty
* Measures how difficult for human to judge its label.

* Model-defined difficulty

* Measures how difficult for a well-trained model to predict its label.

Human-defined Difficulty

* Step 1: Data Construction

* In SNLI, the labels are determined by the majority of the crowd-sourced
annotators. If there is no majority for an instance, its label would be “unknown”.

* We collect 1,119 “unknown” instances as difficulty instances, and randomly
sample 1,119 simple instances from the SNLI training set.

* Now, we have 2,238 instances with two labels (simple or difficult), and randomly
sample 1,238 instances with balanced labels as training set and use the rest 1k
Instances as the test set.

* Step 2: Training Models to Predict Instance Difficulty
* We train a BERT-base-uncased with a linear classifier on the top.

Human-defined Difficulty

* Can We Learn to Predict Human-defined Difficulty?
* Almost no!

1.0 = ,
—e— [rain
—e— Jest
o
© 0.8 -
)
@)
@)
<
0.6 -
0 100 200 300 400

Training Steps

Model-defined Difficulty

* Step 1: Data Construction

* ldea: An Instance can be defined as a difficult one If it can not be correctly
predicted by a well-trained model.

h_‘ [05 1’ Os 05 M 1]
— » — ||| —— [0,1,1,2,-,1]
1‘ / — [0,0,1,1,-,0]
SNLI h
e . — £, SNLI Sentence-level
Training set Train —
9 - Annotate Dev set Difficulty Labels
| A fz
— s [[0, -, 11, -, [1, -, 1]]
: Af—fl. : é [[0’ ...’ 0], ...’ [0’ ...’ 1]]
I }F — [, -, 11, -, [1, -, 1]
OntoNotes NER OntoNotes NER Token-Level

Training set Multi-Exit BERT Dev set Difficulty Labels

Model-defined Difficulty

* Step 1: Data Construction

* ldea: An Instance can be defined as a difficult one If it can not be correctly
predicted by a well-trained model.

* Step 2: Training Models to Predict Instance Difficulty
* Majority: Always predicts the majority class for each label.

* Linear-M: A multi-classification linear layer that takes as input the average
pooled word embeddings and outputs the exiting layer (1~12)

* Linear-B: A binary classification linear layer that takes as input the hidden states
at each BERT layer and outputs the difficulty label at this layer (0/1)

LSTM: Takes as input the instance and outputs the exiting layer (1~12)
BERT: Takes as input the instance and outputs the exiting layer (1~12)

Model-defined Difficulty

* Can We Learn to Predict Model-defined Difficulty?
* Almost no!

Model Precision Recall F1 Score

Sentence-Level Difficulty

1.0 -
B Majority Majority 60.5 36.7 45.7
0.8 - B Linear-M Linear-M 54.8 42.1 47.6
- . I Linear-B Linear-B 529 453 488
E 0.6 -] LSTM BiLSTM 54.5 45.2 49.4
3 . EEm BERT BERT 61.1 49.9 54.9
< 0.4 - . Token-Level Difficulty

o
N
]

Majority” - - -
Linear-B 56.6 38.7 46.0

BiLSTM 46.8 39.9 43.0
Sentence-Level Token-Level BERT 65.6 44.6 53.1

O
o
I

HashEE: Hash Early Exiting

* What Is Unnecessary and What Works?

* On the one hand, our experiments show that instance difficulty 1s hard to be
predicted.

* On the other hand, learn-to-exit methods have achieved competitive results.

* There must be something works and it has nothing to do with estimating
Instance difficulty.

* | et’s take a closer look at the learn-to-exit module

P(ylx) =) P(ylx,d)P(d|x)
deD I
Difficulty Learn-to-

(implies Architecture) exit module

HashEE: Hash Early Exiting

* What Is Unnecessary and What Works?

* On the one hand, our experiments show that instance difficulty 1s hard to be
predicted.

* On the other hand, learn-to-exit methods have achieved competitive results.

* There must be something works and it has nothing to do with estimating
Instance difficulty.

* | et’s take a closer look at the learn-to-exit module

* Consistency hypothesis: /f a training instance x; is predicted to exit at layer,
then an inference instance x; that is similar with x; should exit at layer, too.

|

Can we just replace the neural learn-to-exit module with a simple hash function?

HashEE: Hash Early Exiting

* HashEE

* Assign tokens to fixed exiting layers using a hash function.
* Considered hash functions:

* Random Hash Q Q Q /9\ Q

* Frequency Hash

I
Transformer Encoder Layer
e M| Hash HASH TABLE ! y
(Token — Layer) |

e Clustered Hash e C,{ 6 é)a/;)

 Can be used for both is — 1
NLU and NLG EMoRaIT — 3

= ¢¢¢¢¢
\ IEmbedd}ng Layerl
Thls i

S an awesome movie

Transformer Encoder Layer

O Calculated Token O Exited Token — Attention -==> Copy

Experiments on NLU

» State-of-the-art on ELUE (A Benchmark for Efficient NLP)

Models SST-2 IMDb SNLI SciTail MRPC STS-B ELUE
(8.5k) (20.0k) (549.4k) (23.6k) (3.7k) (5.7k) Score
Pre-Trained Language Models
BERT-3L 79.3 (4.0x) 88.4 4.0x) 87.1 4.0x) 84.3@.0x) 76.04.0x) 75.84.0x) -3.70
ALBERT-3L 82.4 (3.6x) 90.739x) 87.83.7x) 87.53B9x) 80.03B.6x) 79.13.9x%) -1.59
RoBERTa-3L 81.8(4.1x) 90.7 42x) 88.038x) 84.93B9x) 75.63B9x) 67.53.9x) -2.17
ElasticBERT-3L 84.1 (4.0x) 91.8 (4.0x) 89.3 (4.0x) 91.94.0x) 83.14.0x) 83.54.0x) 0.00
Static Models
DistilBERT 84.8 (20x) 92.02.0x) 89.22.0x) 89.720x) 83.820x) 81.72.0x) -2.55
TinyBERT 85.3(20x) 89.0(2.0x) 89.32.0x) 90.02.0x) 84.72.0x) 85.0(2.0x) -2.20
HeadPrune 84.8(13x) 84.7(1.5x) 87.8(15x) 883(1.5x) 77.8(1.5x) 74.8(1.5%) -6.85
BERT-of-Theseus 84.4 2.0x) 90.7 2.0x) 89.4 2.0x) 92.1 2.0x) 82.42.0x) 85.0(2.0x) -2.55
Dynamic Models
DeeBERT 78.9 34x) 79.54.1x) 48.1@36x) T71.9@3B4x) 79.1(35%) - -
FastBERT 82.7(3.7x) 92.5(3.5x) 88.8(3.5x) 89.03.6x) 80.34.2x) - -
PABEE 83.1 29x) 91.6 (3.4x) 88.7@B.1x) 90.733x) 75.2@35x) 80.13.2x) -1.31
CascadeBERT 82.4 3.8x) 91.8(3.7x) 89.03.6x) 91.738x) 78.8(3.8%) - -
BERXiT w/ BERT 71.8(22x) 85.0(28x) 884 @3.6x) 803@3B4x) 749 @40x) 57.84.0x) -6.12
BERxiT w/ ElasticBERT 72.6 4.4x) 91.2 (4.0x) 84.7(39x) 91.04.0x) 78.6@3x) 81.5(4.0x) -3.90
Ours
HASHEE 85.548x) 924 (6.2x) 89.6 44x) 92.3(5.1x) 84.04.8x) 84.3(4.6x) 1.20

Experiments on NLU

* Effect of Hash Functions

Hash Speed SST-2 SNLI MRPC
Functions -up (8.5k) (549.4k) (3.7k)
Backbone: ElasticBERT-6L
Rand-incons | 3.0x | 85.5 (4+0.53) 89.7 85.0 (+0.22)
Rand-cons 3.0x | 85.7 (£0.45) 90.1 86.3 (+0.67)
Frequency 49x | 85.5(40.41) 89.6 84.0 (+0.27)
MI 3.3x | 85.5(+0.49) 90.0 86.0 (+0.23)
Clustered 3.0x | 85.7 (£0.50) 90.2 86.3 (+0.47)
Backbone: ElasticBERT-12L
Rand-incons | 1.6x | 85.7 (+0.38) 89.6 86.6 (+0.45)
Rand-cons 1.5x | 86.5 (4+0.37) 90.2 87.4 (+0.34)
Frequency 2.8x | 85.6 (£0.37) 89.8 84.4 (+0.17)
MI 1.8x | 86.6 (+0.17) 90.1 87.2 (£0.66)
Clustered 1.5x | 87.0 (£0.54) 90.1 87.3 (£+0.48)

ELUE Score

5 0 B Rand-incons
) I Rand-cons
15 [Frequency
' 1 Ml

B Clustered
1.0 1
0.5 -
0.0 - __— —‘ ‘[—|-

SST-2 SNLI

Experiments on NLU

* Effect of Backbones

Accuracy

88 - W
®.. N\ | T T T
86 - > A *
0 S,
i -.‘:}_h,-‘: n:“"--
84 ., * %
Ry -
82 - hp X
80 -
y
A
T T T T]
1x 2% 3x 4% 5x

Speed-up

* PO %P o*xDPex*thre

BERT

BERT (w/ FastBERT)
BERT (w/ HashEE)
RoBERTa
RoBERTa (w/ DeeBERT)
RoBERTa (w/ HashEE)
ALBERT

ALBERT (w/ PABEE)
ALBERT (w/ HashEE)
ElasticBERT
ElasticBERT (w/ Entropy)
ElasticBERT (w/ HashEE)

Experiments on NLU

* Comparison of Actual Inference Time

SNLI (Avg Sentence Length: 27) IMDb (Avg Sentence Length: 278)
7k A 1000
—— HashEE —e— HashEE
6k 1 —*— FastBERT —+— FastBERT
pe —+— PABEE pe 8001 —— PABEE
S 5k- BERT S —=— BERT
Y OOM o
n n
q 00OM -
g K 5 ©00 OOM
a a
1] un
QL 3kH Q
o Q. 400
5 g
¢ 2K n
* +
Ll 2001 /__._.oum
U_

1 4 16 64 256 1024 1 2 4 8 16 32 64
Batch Size Batch Size

Experiments on NLG

* Results on 4 Summarization Datasets

Model Speed-up English Chinese
Enc. Dec. Total Reddit CNN/DM CSL TTNews

BART 1.0x 1.0x 1.0x | 29.71/9.91/23.43 44.16/21.28/40.90 | 64.49/52.48/61.81 53.84/38.09/49.85
DAT 1.0x 05x 0.8x | 27.02/8.89/22.68 40.30/17.77/37.53 - -
BART-6L 20x 14x 1.8x | 26.22/6.82/21.05 40.02/16.60/36.82 -
HASHEE w/ BART | 3.3x 1.0x 1.8x | 28.77/8.52/21.97 41.04/18.41/37.65 - -

CPT 1.0x 10x 1.0x - - 65.49/53.82/62.96 53.48/37.59/49.82
CPT-6L 20x 1.2x 1.9x - - 52.29/39.35/50.06 50.89/33.75/45.42
HASHEE w/ CPT 23x 1.0x 2.2x - - 62.42/49.96/59.15 52.67/35.31/46.97

Thanks!

