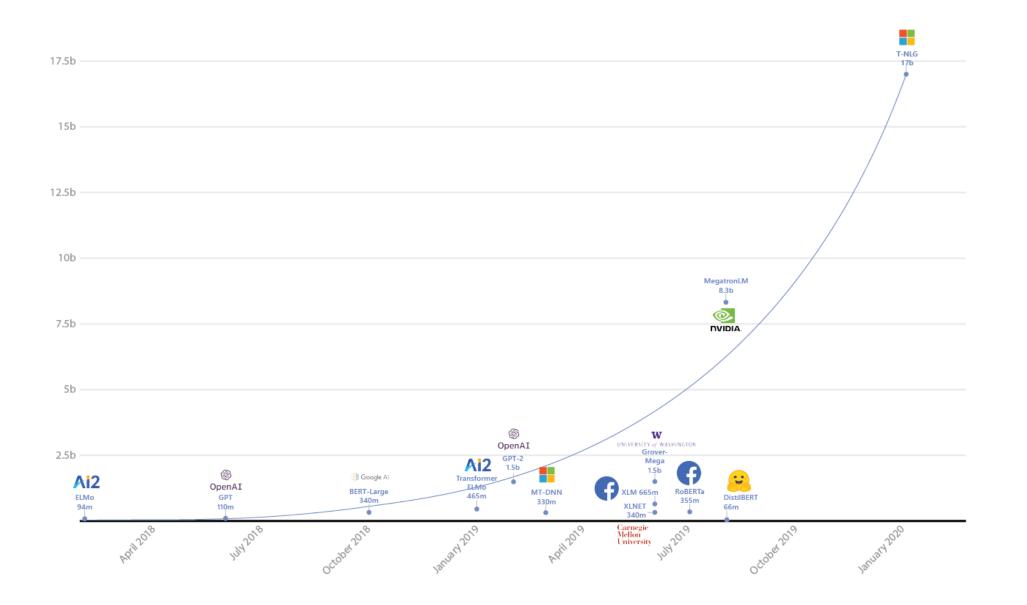


Towards Efficient NLP A Standard Evaluation and A Strong Baseline

Tianxiang Sun txsun19@fudan.edu.cn 31 Oct 2021

The Era of Big Models



From SOTA to "Pareto SOTA"

The Shifted Goal

• Instead of pursuing the reachless SOTA accuracy, most works are pursuing improvement on other dimensions (like efficiency), leading to Pareto SOTA.

• The Lagging Benchmarks

• Most of these works are evaluated on accuracy-centric benchmarks (e.g., GLUE, SuperGLUE, CLUE…

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Method	Speed -up	CoLA (8.5k)	MRPC (3.7K)	QQP (364k)	RTE (2.5K)	SST-2 (67K)	Macro Avg.
			Dev Set				
ALBERT-base [3] ALBERT-6L ALBERT-9L	$1.0 \times$ $2.0 \times$ $1.3 \times$	58.9 53.4 55.2	89.5 85.8 87.1	89.6 86.8 88.3	78.6 73.6 75.9	92.8 89.8 91.3	81.9 77.9 79.6
LayerDrop [31] HeadPrune [32]	2.0 imes $1.2 imes$	53.6 54.1	85.9 86.2	87.3 88.0	74.3 75.1	90.7 90.5	78.4 78.8
DeeALBERT † [5] FastALBERT † [6] PABEE [8]	$1.5 \times$ $1.5 \times$ $1.5 \times$	57.6 58.0 61.2	89.8 89.8 90.0	89.1 89.3 89.6	79.1 79.5 80.1	92.9 92.9 93.0	81.7 81.9 82.8
<i>Ours</i> w/ Patience w/ Voting	1.5× 1.5×	61.4 61.6	92.4 92.7	89.6 89.8	80.9 80.9	93.2 93.5	83.5 83.7
			Test Set				
ALBERT-base † [3] PABEE [8]	$1.0 \times 1.5 \times$	54.1 55.7	86.9 87.4	71.1 71.2	76.4 77.3	94.0 94.1	76.5 77.1
<i>Ours</i> w/ Patience w/ Voting	1.5× 1.5×	56.2 56.2	87.7 88.0	71.4 71.5	77.9 78.2	94.1 94.4	77.5 77.7

Sun et al. Early Exiting With Ensemble Internal Classifiers.

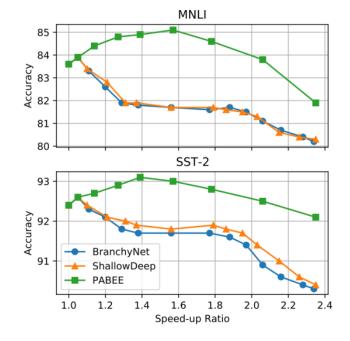
Need For A Standard Evaluation

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

• The data points in line-to-line comparison are not publicly accessible.



We also compare LTE with the concurrent patience-based baseline PABEE (Zhou et al., 2020) in Table 3, showing their speedups and average exit layers at the same relative scores. PABEE does not provide exact speedup numbers; therefore we estimate the values from their figures. We can see that *Alternating* fine-tuning plus LTE is marginally better than PABEE on regression tasks.

Zhou et al. BERT Loses Patience: Fast and Robust Inference with Early Exit. NeurIPS 2020 Xin et al. BERxiT: Early Exiting for BERT with Better Fine-Tuning and Extension to Regression. EACL 2021.

Need For A Standard Evaluation

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

• The data points in line-to-line comparison are not publicly accessible.

Non-standard Measurements

- Different works may adopt different metrics (FLOPs, physical time, number of layers, number of parameters…)
- Even the same metric is adopted, the evaluation can be different (due to hardware infrastructure, software libraries, etc.)

Mo	del	Parameters				Model		FLOPs
	base	108M	Model	# param.	Inf. time		Acc.	(speedup)
BERT	large	334M		(Millions)	(seconds)	FastBERT	95.25	10741M
	base	12M	ELMo	180	895	(speed=0.1)	95.25	(2.02x)
ALBERT	large	18M	BERT-base	110	668	FastBERT	92.00	3191M
	xlarge	60M	DistilBERT	66	410	(speed=0.5) FastBERT		(6.82x) 2315M
	xxlarge	235M				(speed=0.8)	89.75	(9.40x)

Need For A Standard Evaluation

Incomprehensive Comparison

• Current comparison is usually point-to-point.

Unaccessible Results

• The data points in line-to-line comparison are not publicly accessible.

Non-standard Measurements

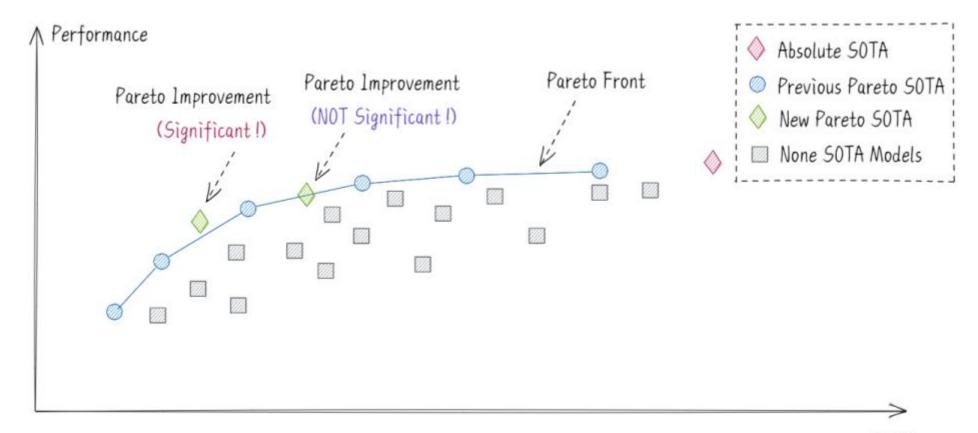
- Different works may adopt different metrics (FLOPs, physical time, number of layers, number of parameters...)
- Even the same metric is adopted, the evaluation can be different (due to hardware infrastructure, software libraries, etc.)

Inconvenience

• It is hard to plot an accuracy-speed curve on GLUE test set due to the submission limitation.

A New Benchmark Should…

• Overall, it should tell you *whether* and *how much* a model achieves Pareto improvement.



Building the Pareto Frontier!

FLOPs

A New Benchmark Should…

- Multi-dimensional Evaluation (Incomprehensive Comparison)
 - Comprehensive line-to-line comparison
- Public Accessible (Unaccessible Results)
 - Open source all the results to facilitate future research
- Standard Evaluation (Non-standard Measurements)
 - Unified metrics (FLOPs and #params), and standardized evaluation toolkit
- Easy-to-Use (Inconvenience)
 - Submission should be easy

Efficient Language Understanding Evaluation

http://eluebenchmark.fastnlp.top

ELUE Tasks & Datasets

Sentiment Analysis

- SST-2
- IMDb
- Natural Language Inference
 - SNLI
 - SciTail
- Similarity and Paraphrase
 - MRPC
 - STS-B

Tasks	Datasets	Train	 Dev 	Test
Sentiment	SST-2	8,544	1,101	2,208
Analysis	IMDb	20,000	5,000	25,000
Natural Language	SNLI	549,367	9,842	9,824
Inference	SciTail	23,596	1,304	2,126
Similarity and	MRPC	3,668	408	1,725
Paraphrase	STS-B	5,749	1,500	1,379

ELUE Submission

• Submit a model, or submit a test file?

- Submit a model (SQuAD-like)
 - Seasy to measure model efficiency
 - Costly for submitting and serving
 - Engineering and implementation matters too much

• Submit a test file (GLUE-like)

- Seasy to submitting and evaluating
 - **?** But how to measure model efficiency

ELUE Submission

Submit test files, and model.py

Test files

index	pred	modules
0	1	(10),emb; (10,768),layer_1; (768),exit_1
1	0	(15),emb; (15,768),layer_1; (768),exit_1; (15,768),layer_2; (768),exit_2
2	1	(12),emb; (12,768),layer_1; (768),exit_1

- Combining the two kinds of files, we can calculate the FLOPs for each sample!
- Token-level early exit and MoE models are also supported in this way

Submit from a paper

• Similar to paper-with-code

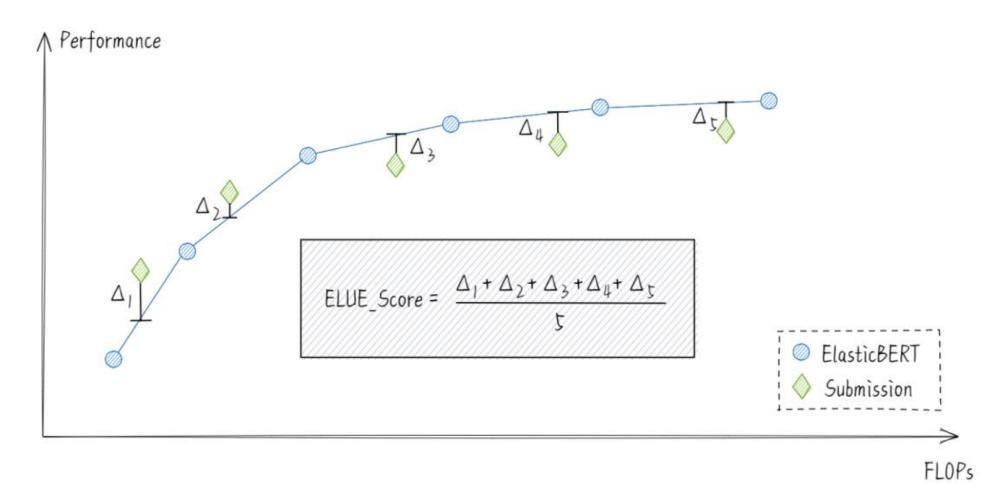
Model.py

```
# import packages
import torch.nn as nn
from transformers import BertConfig
. . .
# module definitions
class ElasticBERTEmbeddings(nn.Module):
    def __init__():
        . . .
    def forward(x):
        . . .
class ElasticBERTLayer(nn.Module):
    def __init__():
        . . .
    def forward(x)
        . . .
class ElasticBERT(nn.Module):
    def __init__():
        . . .
    def forward(x)
        . . .
# module dict
config = BertConfig(num_labels=2)
module_list = {
    'emb': ElasticBertEmbeddings(config),
    'layer_1': ElasticBertLayer(config),
    'exit_1': nn.Linear(config.hidden_size, num_labels),
    'layer_2': ElasticBertLayer(config),
    'exit_2': nn.Linear(config.hidden_size, num_labels),
    . . .
entire_model = ElasticBERT(config)
```

ELUE Leaderboard

• How can we rank these efficient models?

• We need to score the (performance, FLOPs) pairs



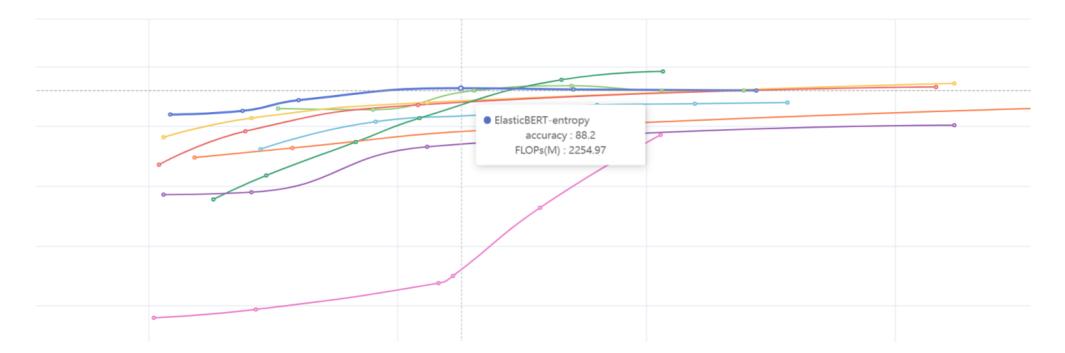
ELUE Leaderboard

ELUE Score	ELUE (40M params)	ELUE (55M	ELUE (55M params) ELUE (70M params) ELUE (110M params)		ams)				
Madal	Sentiment Analysis		Natural Language Inference		Similarity an	d Paraphrase	Params (MParams)	Score 🗢	
Model	SST-2	IMDb	SNLI	SciTail	MRPC	STS-B	•	Score 🗸	
ElasticBERT-BA SE	0.0	0.0	0.0	0.0	0.0	0.0	109.0	0	
ElasticBERT-pati ence	0.37	0.2	0.02	0.38	-1.04	-0.45	116.0	-0.09	
ALBERT-PABEE	-1.34	-0.22	-0.85	-0.4	-2.97	-2.1	18.0	-1.31	
ALBERT-BASE	-2.3	-1.07	-1.66	-1.49	-0.31	-2.7	12.0	-1.59	
RoBERTa-BASE	-0.9	-0.12	-0.69	-3.31	-2.86	-5.15	125.0	-2.17	
BERT-BASE	-4.55	-2.15	-1.5	-3.35	-5.88	-4.75	109.0	-3.7	

ELUE Task Page

Sentiment Analysis

Sentiment analysis is classifying one or more sentences by their positive/negative sentiment.



https://github.com/fastnlp/ElasticBERT

• Pre-trained Multi-Exit Transformer Encoder

$$\mathcal{L} = \sum_{l=1}^{L} (\mathcal{L}_{l}^{\text{MLM}} + \mathcal{L}_{l}^{\text{SOP}})$$

- Pre-trained on ~160GB English corpora
 - Wikipedia, BookCorpus, OpenWebText, C4
- Pre-trained for 125k steps on 64 32G V100
- Using Gradient Equilibrium and Grouped Training to stabilize and speedup pre-training

• A Strong Baseline for Static Models

Models	#Params	CoLA	MNLI-(m/mm)	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Average
			BASE M	lodels						
BERT _{BASE}	109M	56.5	84.6/84.9	87.6	91.2	89.6	69.0	92.9	89.4	82.9
ALBERT _{BASE}	12M	56.8	84.9/85.6	90.5	91.4	89.2	78.3	92.8	90.7	84.5
RoBERTa _{BASE}	125M	63.6	87.5/87.2	90.8	92.7	90.3	77.5	94.8	90.9	86.1
ElasticBERT _{BASE}	109M	64.3	85.3/85.9	91.0	92.0	90.2	76.5	94.3	90.7	85.6
BERT _{BASE} -6L	67M	44.6	81.4/81.4	84.9	87.4	88.7	65.7	90.9	88.1	79.2
ALBERT _{BASE} -6L	12M	52.4	82.6/82.2	89.0	89.8	88.7	70.4	90.8	89.6	81.7
RoBERTa _{BASE} -6L	82M	44.4	84.2/ 84.6	87.9	90.5	89.8	60.6	92.1	89.0	80.3
MobileBERT	25M	52.1	83.9/83.5	89.3	91.3	88.9	63.5	91.3	87.2	81.2
TinyBERT-6L	67M	46.3	83.6/83.8	88.7	90.6	89.1	73.6	92.0	89.4	81.9
ElasticBERT _{BASE} -6L	67M	53.7	84.3 /84.2	89.7	90.8	89.7	74.0	92.7	90.2	83.3
			Test Set 1	Results						
TinyBERT-6L	67M	42.5	83.2/82.4	86.2	89.6	79.6	73.0	91.8	85.7	79.3
ElasticBERT _{BASE} -6L	67M	49.1	83.7/83.4	87.3	90.4	79.7	68.7	92.9	86.9	80.3

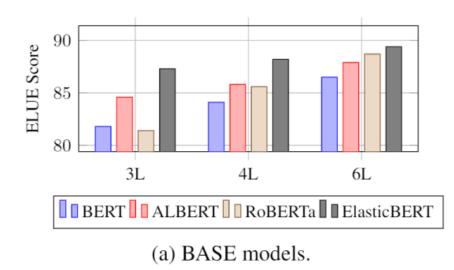
ElasticBERT For Downstream Fine-Tuning

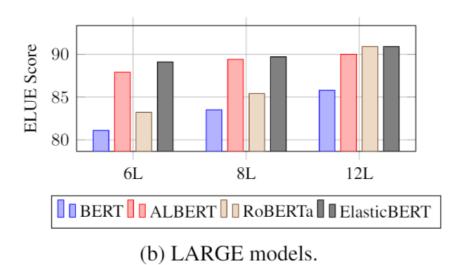
• A Strong Baseline for Static Models

Models	#Params	CoLA	MNLI-(m/mm)	MRPC	QNLI	QQP	RTE	SST-2	STS-B	Average
LARGE Models										
BERTLARGE	335M	61.6	86.2/86	90.1	92.2	90.1	72.9	93.5	90.4	84.8
ALBERTLARGE	18M	60.1	86/86.1	90.4	91.6	89.6	83.0	95.2	91.4	85.9
RoBERTa LARGE	355M	66.4	89/89.6	91.6	94.2	90.7	86.6	95.4	92.3	88.4
ElasticBERT LARGE	335M	66.3	88/88.5	92.0	93.6	90.9	83.1	95.3	91.7	87.7
BERT _{LARGE} -12L	184M	42.6	81/81.1	81.6	87.2	89.3	65.7	89.3	88.7	78.5
ALBERT _{LARGE} -12L	18M	59.0	85.3/85.8	90.1	91.4	89.6	76.7	93.3	91.3	84.7
RoBERTaLARGE-12L	204M	62.3	86.3/86.2	89.4	92.3	90.4	71.8	93.5	91.1	84.8
ElasticBERT _{LARGE} -12L	184M	62.1	86.2/86.4	89.5	92.5	90.6	79.1	93.0	91.6	85.7
Test Set Results										
RoBERTaLARGE-12L	204M	59.4	86.4/85.2	87.6	91.6	80.4	67.3	94.6	89.5	82.4
ElasticBERT _{LARGE} -12L	184M	57.0	85.4/84.9	87.7	92.3	81.2	71.8	92.9	89.7	82.6

ElasticBERT For Downstream Fine-Tuning

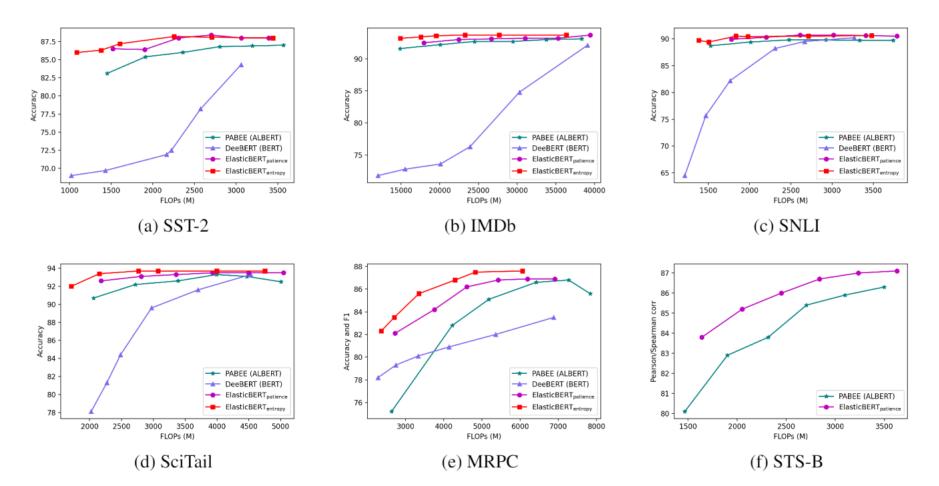
• A Strong Baseline for Static Models





ElasticBERT For Downstream Fine-Tuning

- A Strong Baseline for Static Models
- A Strong Backbone for Dynamic Models



	SST-2	IMDb	MRPC	STS-B	SNLI	SciTail	Average			
ElasticBERT _{BASE}	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Static Models										
BERT _{BASE}	-4.55	-2.15	-5.88	-4.75	-1.50	-3.35	-3.70			
ALBERT BASE	-2.30	-1.07	-0.31	-2.70	-1.66	-1.49	-1.59			
RoBERTa BASE	-0.90	-0.12	-2.86	-5.15	-0.69	-3.31	-2.17			
TinyBERT-6L	-1.70	-3.70	-2.60	-1.90	-0.80	-2.50	-2.20			
		Dyn	amic Mode	els						
PABEE	-1.34	-0.22	-2.97	-2.10	-0.85	-0.40	-1.31			
DeeBERT (BERT)	-12.10	-14.00	-4.92	-	-8.36	-6.17	-			
DeeBERT (RoBERTa)	-1.98	-4.40	-2.72	-	-23.39	-9.82	-			
ElasticBERT _{patience}	0.37	0.20	-1.04	-0.46	0.02	0.38	-0.09			
ElasticBERT _{entropy}	0.96	1.03	-0.22	-	0.01	0.69	-			

ElasticBERT Usage

An example using Huggingface Transformers

>>> from transformers import BertTokenizer as ElasticBertTokenizer

>>> from models.configuration_elasticbert import ElasticBertConfig

>>> from models.modeling_elasticbert import ElasticBertForSequenceClassification

>>> num_output_layers = 1

>>> config = ElasticBertConfig.from_pretrained('fnlp/elasticbert-base', num_output_layers=num_output_layers)

>>> tokenizer = ElasticBertTokenizer.from_pretrained('fnlp/elasticbert-base')

>>> model = ElasticBertForSequenceClassification.from_pretrained('fnlp/elasticbert-base', config=config)

>>> input_ids = tokenizer.encode('The actors are fantastic .', return_tensors='pt')

>>> outputs = model(input_ids)

Github: <u>https://github.com/fastnlp/ElasticBERT</u>

Huggingface: <u>https://huggingface.co/fnlp/elasticbert-base</u>

Thanks!

https://arxiv.org/abs/2110.07038

http://eluebenchmark.fastnlp.top

https://github.com/fastnlp/ElasticBERT

https://huggingface.co/fnlp/elasticbert-base