

CoLAKE: Contextualized Language and Knowledge Embedding

Tianxiang Sun, Yunfan Shao, Xipeng Qiu Qipeng Guo, Yaru Hu, Xuanjing Huang, Zheng Zhang

COLING 2020

Language Models Need Knowledge

PLMs perform poorly on entity recognition

- Contextualized PLMs achieved small improvements on entity & semantic related tasks compared with non-contextualized methods. (<u>Tenney et al.</u>)
- BPE tokenization breaks entities

The native language of Jean Mara ##is is French.

• Surface form-based reasoning

Jean MaraisFrenchFrenchFrenchfrenchfrenchDaniel CeccaldiItalianFrenchFrenchfrenchital		original BERT	E-BERT- replace	E-BERT- concat	ERNIE	Know- Bert
Orane DemazisAlbanianFrenchFrenchfrenchfrenSylvia LopezSpanishFrenchSpanishspanishspanishspanishAnnick AlaneEnglishFrenchFrenchFrenchenglishenglish	Jean Marais	French	French	French	french	french
	Daniel Ceccaldi	Italian	French	French	french	italian
	Orane Demazis	Albanian	French	French	french	french
	Sylvia Lopez	Spanish	French	Spanish	spanish	spanish
	Annick Alane	English	French	French	english	english

BERT does not know *Daniel Ceccaldi* (as an entity) at all. It just think *Daniel Ceccaldi* looks like an Italian name.

E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT. https://arxiv.org/abs/1911.03681

Injecting Knowledge into PLMs

Injecting entity embeddings

- ERNIE, KnowBERT, K-BERT, etc.
- The entity embeddings are NOT
 - Jointly learned along with PLM
 - Contextualized
- Knowledge as supervision
 - WKLM, etc.

ERNIE: Enhanced Language Representation with Informative Entities <u>https://arxiv.org/abs/1905.07129</u>

https://arxiv.org/abs/1909.04164

Representation in Language and Knowledge

Combine the success of both sides -- CoLAKE

Word-knowledge Graph

• Why?

• Different facts should be accessed to help understand different sentences.

• What?

• Word-knowledge graph is a unified data structure to integrate language context and knowledge context.

Word-knowledge Graph

• How?

• Word graph + Knowledge subgraph

Modify Transformer for word-knowledge graph

Pre-Training Objective

Masked Language Model (MLM) on word-knowledge graph

- Masking word nodes
 - Learn linguistic knowledge
- Masking entity nodes
 - Anchor nodes masked Learn to align the two spaces
 - Entity nodes masked Learn contextualized entity embeddings
- Masking relation nodes
 - Relation between anchor nodes Learn to do relation extraction
 - Otherwise Learn contextualized relation embeddings

Some Details

Mixed CPU-GPU training

Negative sampling

• Sample negative entities from the 3/4 powered entity distribution.

Alignment of the two spaces

- Discard neighbors of anchor nodes in 50% of time.
- Replace mention words with anchor nodes.

Experiments

Knowledge-driven tasks

- Entity typing
- Relation extraction

Knowledge probing tasks

- LAMA
- LAMA-UHN

Language understanding tasks

- GLUE
- Synthetic graph task
 - Word-knowledge graph completion

Knowledge-driven tasks

Model	Oj	pen Enti	ity	FewRel			
WIOUCI	P	R	F	Р	R	F	
BERT (Devlin et al., 2019)	76.4	71.0	73.6	85.0	85.1	84.9	
RoBERTa (Liu et al., 2019)	77.4	73.6	75.4	85.4	85.4	85.3	
ERNIE (Zhang et al., 2019)	78.4	72.9	75.6	88.5	88.4	88.3	
KnowBERT (Peters et al., 2019)	78.6	73.7	76.1	-	-	-	
KEPLER (Wang et al., 2019c)	77.8	74.6	76.2	-	-	-	
E-BERT (Pörner et al., 2019)	-	-	-	88.6	88.5	88.5	
CoLAKE (Ours)	77.0	75.7	76.4	90.6	90.6	90.5	

• Knowledge probing tasks

Corpus	Pre-trained Models ELMo ELMo5.5B BERT RoBERTa CoLAKE K-Adapter*								
		2.1	11.4	5.2	0.5	7.0			
LAMA-Google-RE	2.2	3.1	5.7	5.3	9.5	7.0			
LAMA-UHN-Google-RE	2.3	2.7		2.2	4.9	3.7			
LAMA-T-REx	0.2	0.3	32.5	24.7	28.8	29.1			
LAMA-UHN-T-REx	0.2	0.2	23.3	17.0	20.4	23.0			

Language understanding tasks

Model	MNLI (m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	AVG.
RoBERTa	87.5 / 87.3	91.9	92.8	94.8	63.6	91.2	90.2	78.7	86.4
KEPLER	87.2 / 86.5	91.5	92.4	94.4	62.3	89.4	89.3	70.8	84.9
CoLAKE	87.4 / 87.2	92.0	92.4	94.6	63.4	90.8	90.9	77.9	86.3

• Synthetic graph task

• Word-knowledge graph completion

Experiments

Results on word-knowledge graph completion

• CoLAKE is essentially a pre-trained inductive GNN which simultaneously models structural knowledge and text semantics.

Model	$MR\downarrow$	MRR	HITS@1	HITS@3	HITS@10			
Transductive setting								
TransE (Bordes et al., 2013) DistMult (Yang et al., 2015) ComplEx (Trouillon et al., 2016) RotatE (Sun et al., 2019) CoLAKE	15.97 27.09 26.73 30.36 2.03	67.30 60.56 61.09 70.90 82.48	67.3060.2860.5648.6661.0949.8070.9064.7482.4872.14		79.75 79.61 79.78 81.05 98.58			
Inductive setting								
DKRL (Xie et al., 2016) CoLAKE	168.21 31.01	8.18 28.10	5.03 15.69	7.28 30.28	14.13 58.05			

Thanks!

CoLAKE: Contextualized Language and Knowledge Embedding, Sun et al. 2020 <u>https://github.com/txsun1997/CoLAKE</u>